31 KiB
[numeric.limits]
17 Language support library [support]
17.3 Implementation properties [support.limits]
17.3.5 Class template numeric_limits [numeric.limits]
17.3.5.1 General [numeric.limits.general]
Thenumeric_limits class template provides a C++ program with information about various properties of the implementation's representation of the arithmetic types.
namespace std {template class numeric_limits {public:static constexpr bool is_specialized = false; static constexpr T min() noexcept { return T(); }static constexpr T max() noexcept { return T(); }static constexpr T lowest() noexcept { return T(); }static constexpr int digits = 0; static constexpr int digits10 = 0; static constexpr int max_digits10 = 0; static constexpr bool is_signed = false; static constexpr bool is_integer = false; static constexpr bool is_exact = false; static constexpr int radix = 0; static constexpr T epsilon() noexcept { return T(); }static constexpr T round_error() noexcept { return T(); }static constexpr int min_exponent = 0; static constexpr int min_exponent10 = 0; static constexpr int max_exponent = 0; static constexpr int max_exponent10 = 0; static constexpr bool has_infinity = false; static constexpr bool has_quiet_NaN = false; static constexpr bool has_signaling_NaN = false; static constexpr T infinity() noexcept { return T(); }static constexpr T quiet_NaN() noexcept { return T(); }static constexpr T signaling_NaN() noexcept { return T(); }static constexpr T denorm_min() noexcept { return T(); }static constexpr bool is_iec559 = false; static constexpr bool is_bounded = false; static constexpr bool is_modulo = false; static constexpr bool traps = false; static constexpr bool tinyness_before = false; static constexpr float_round_style round_style = round_toward_zero; };}
For all members declaredstatic constexpr in thenumeric_limits template, specializations shall define these values in such a way that they are usable as constant expressions.
For thenumeric_limits primary template, all data members are value-initialized and all member functions return a value-initialized object.
[Note 1:
This means all members have zero or false values unless numeric_limits is specialized for a type.
â end note]
Specializations shall be provided for each arithmetic type, both floating-point and integer, includingbool.
The memberis_specialized shall betrue for all such specializations ofnumeric_limits.
The value of each member of a specialization ofnumeric_limits on a cv-qualified typecv T shall be equal to the value of the corresponding member of the specialization on the unqualified type T.
Non-arithmetic standard types, such ascomplex, shall not have specializations.
17.3.5.2 numeric_limits members [numeric.limits.members]
Each member function defined in this subclause is signal-safe ([support.signal]).
[Note 1:
The arithmetic specification described in ISO/IEC 10967-1:2012 is commonly termed LIA-1.
â end note]
static constexpr T min() noexcept;
For floating-point types with subnormal numbers, returns the minimum positive normalized value.
Meaningful for all specializations in whichis_bounded != false, oris_bounded == false && is_signed == false.
static constexpr T max() noexcept;
Meaningful for all specializations in whichis_bounded != false.
static constexpr T lowest() noexcept;
A finite value x such that there is no other finite value y where y < x.163
Meaningful for all specializations in which is_bounded != false.
static constexpr int digits;
Number ofradix digits that can be represented without change.
For integer types, the number of non-sign bits in the representation.
For floating-point types, the number of radix digits in the significand.164
static constexpr int digits10;
Number of base 10 digits that can be represented without change.165
Meaningful for all specializations in whichis_bounded != false.
static constexpr int max_digits10;
Number of base 10 digits required to ensure that values which differ are always differentiated.
Meaningful for all floating-point types.
static constexpr bool is_signed;
true if the type is signed.
Meaningful for all specializations.
static constexpr bool is_integer;
true if the type is integer.
Meaningful for all specializations.
static constexpr bool is_exact;
true if the type uses an exact representation.
All integer types are exact, but not all exact types are integer.
For example, rational and fixed-exponent representations are exact but not integer.
Meaningful for all specializations.
static constexpr int radix;
For floating-point types, specifies the base or radix of the exponent representation (often 2).166
For integer types, specifies the base of the representation.167
Meaningful for all specializations.
static constexpr T epsilon() noexcept;
Machine epsilon: the difference between 1 and the least value greater than 1 that is representable.168
Meaningful for all floating-point types.
static constexpr T round_error() noexcept;
Measure of the maximum rounding error.169
static constexpr int min_exponent;
Minimum negative integer such thatradix raised to the power of one less than that integer is a normalized floating-point number.170
Meaningful for all floating-point types.
static constexpr int min_exponent10;
Minimum negative integer such that 10 raised to that power is in the range of normalized floating-point numbers.171
Meaningful for all floating-point types.
static constexpr int max_exponent;
Maximum positive integer such thatradix raised to the power one less than that integer is a representable finite floating-point number.172
Meaningful for all floating-point types.
static constexpr int max_exponent10;
Maximum positive integer such that 10 raised to that power is in the range of representable finite floating-point numbers.173
Meaningful for all floating-point types.
static constexpr bool has_infinity;
true if the type has a representation for positive infinity.
Meaningful for all floating-point types.
Shall betrue for all specializations in whichis_iec559 != false.
static constexpr bool has_quiet_NaN;
true if the type has a representation for a quiet (non-signaling) âNot a Numberâ.174
Meaningful for all floating-point types.
Shall betrue for all specializations in whichis_iec559 != false.
static constexpr bool has_signaling_NaN;
true if the type has a representation for a signaling âNot a Numberâ.175
Meaningful for all floating-point types.
Shall betrue for all specializations in whichis_iec559 != false.
static constexpr T infinity() noexcept;
Representation of positive infinity, if available.176
Meaningful for all specializations for whichhas_infinity != false.
Required in specializations for whichis_iec559 != false.
static constexpr T quiet_NaN() noexcept;
Representation of a quiet âNot a Numberâ, if available.177
Meaningful for all specializations for whichhas_quiet_NaN != false.
Required in specializations for whichis_iec559 != false.
static constexpr T signaling_NaN() noexcept;
Representation of a signaling âNot a Numberâ, if available.178
Meaningful for all specializations for whichhas_signaling_NaN != false.
Required in specializations for whichis_iec559 != false.
static constexpr T denorm_min() noexcept;
Minimum positive subnormal value, if available.179
Otherwise, minimum positive normalized value.
Meaningful for all floating-point types.
static constexpr bool is_iec559;
true if and only if the type adheres to ISO/IEC 60559.180
[Note 2:
The value is true for any of the typesfloat16_t, float32_t, float64_t, or float128_t, if present ([basic.extended.fp]).
â end note]
Meaningful for all floating-point types.
static constexpr bool is_bounded;
true if the set of values representable by the type is finite.181
[Note 3:
All fundamental types ([basic.fundamental]) are bounded.
This member would be false for arbitrary precision types.
â end note]
Meaningful for all specializations.
static constexpr bool is_modulo;
true if the type is modulo.182
A type is modulo if, for any operation involving +, -, or* on values of that type whose result would fall outside the range [min(), max()], the value returned differs from the true value by an integer multiple of max() - min() + 1.
[Example 1:
is_modulo is false for signed integer types ([basic.fundamental]) unless an implementation, as an extension to this document, defines signed integer overflow to wrap.
â end example]
Meaningful for all specializations.
static constexpr bool traps;
true if, at the start of the program, there exists a value of the type that would cause an arithmetic operation using that value to trap.183
Meaningful for all specializations.
static constexpr bool tinyness_before;
true if tinyness is detected before rounding.184
Meaningful for all floating-point types.
static constexpr float_round_style round_style;
The rounding style for the type.185
Meaningful for all floating-point types.
Specializations for integer types shall returnround_toward_zero.
Equivalent to CHAR_MIN, SHRT_MIN,FLT_MIN, DBL_MIN, etc.
Equivalent to CHAR_MAX, SHRT_MAX,FLT_MAX, DBL_MAX, etc.
lowest() is necessary because not all floating-point representations have a smallest (most negative) value that is the negative of the largest (most positive) finite value.
Equivalent to FLT_MANT_DIG, DBL_MANT_DIG,LDBL_MANT_DIG.
Equivalent to FLT_DIG, DBL_DIG,LDBL_DIG.
Equivalent to FLT_RADIX.
Distinguishes types with bases other than 2 (e.g., BCD).
Equivalent to FLT_EPSILON, DBL_EPSILON, LDBL_EPSILON.
Rounding error is described in ISO/IEC 10967-1:2012 Section 5.2.4 and Annex C Rationale Section C.5.2.4 â Rounding and rounding constants.
Equivalent to FLT_MIN_EXP, DBL_MIN_EXP,LDBL_MIN_EXP.
Equivalent toFLT_MIN_10_EXP, DBL_MIN_10_EXP, LDBL_MIN_10_EXP.
Equivalent to FLT_MAX_EXP,DBL_MAX_EXP, LDBL_MAX_EXP.
Equivalent toFLT_MAX_10_EXP, DBL_MAX_10_EXP, LDBL_MAX_10_EXP.
Required by ISO/IEC 10967-1:2012.
Required by ISO/IEC 10967-1:2012.
Required by ISO/IEC 10967-1:2012.
Required by ISO/IEC 10967-1:2012.
Required by ISO/IEC 10967-1:2012.
Required by ISO/IEC 10967-1:2012.
ISO/IEC 60559:2020 is the same as IEEE 754-2019.
Required by ISO/IEC 10967-1:2012.
Required by ISO/IEC 10967-1:2012.
Required by ISO/IEC 10967-1:2012.
Refer to ISO/IEC 60559.
Required by ISO/IEC 10967-1:2012.
Equivalent to FLT_ROUNDS.
Required by ISO/IEC 10967-1:2012.
17.3.5.3 numeric_limits specializations [numeric.special]
All members shall be provided for all specializations.
However, many values are only required to be meaningful under certain conditions (for example,epsilon() is only meaningful ifis_integer isfalse).
Any value that is not âmeaningfulâ shall be set to 0 orfalse.
[Example 1: namespace std {template<> class numeric_limits {public:static constexpr bool is_specialized = true; static constexpr float min() noexcept { return 1.17549435E-38F; }static constexpr float max() noexcept { return 3.40282347E+38F; }static constexpr float lowest() noexcept { return -3.40282347E+38F; }static constexpr int digits = 24; static constexpr int digits10 = 6; static constexpr int max_digits10 = 9; static constexpr bool is_signed = true; static constexpr bool is_integer = false; static constexpr bool is_exact = false; static constexpr int radix = 2; static constexpr float epsilon() noexcept { return 1.19209290E-07F; }static constexpr float round_error() noexcept { return 0.5F; }static constexpr int min_exponent = -125; static constexpr int min_exponent10 = - 37; static constexpr int max_exponent = +128; static constexpr int max_exponent10 = + 38; static constexpr bool has_infinity = true; static constexpr bool has_quiet_NaN = true; static constexpr bool has_signaling_NaN = true; static constexpr float infinity() noexcept { return value; }static constexpr float quiet_NaN() noexcept { return value; }static constexpr float signaling_NaN() noexcept { return value; }static constexpr float denorm_min() noexcept { return min(); }static constexpr bool is_iec559 = true; static constexpr bool is_bounded = true; static constexpr bool is_modulo = false; static constexpr bool traps = true; static constexpr bool tinyness_before = true; static constexpr float_round_style round_style = round_to_nearest; };} â end example]
The specialization forbool shall be provided as follows:
namespace std {template<> class numeric_limits {public:static constexpr bool is_specialized = true; static constexpr bool min() noexcept { return false; }static constexpr bool max() noexcept { return true; }static constexpr bool lowest() noexcept { return false; }static constexpr int digits = 1; static constexpr int digits10 = 0; static constexpr int max_digits10 = 0; static constexpr bool is_signed = false; static constexpr bool is_integer = true; static constexpr bool is_exact = true; static constexpr int radix = 2; static constexpr bool epsilon() noexcept { return 0; }static constexpr bool round_error() noexcept { return 0; }static constexpr int min_exponent = 0; static constexpr int min_exponent10 = 0; static constexpr int max_exponent = 0; static constexpr int max_exponent10 = 0; static constexpr bool has_infinity = false; static constexpr bool has_quiet_NaN = false; static constexpr bool has_signaling_NaN = false; static constexpr bool infinity() noexcept { return 0; }static constexpr bool quiet_NaN() noexcept { return 0; }static constexpr bool signaling_NaN() noexcept { return 0; }static constexpr bool denorm_min() noexcept { return 0; }static constexpr bool is_iec559 = false; static constexpr bool is_bounded = true; static constexpr bool is_modulo = false; static constexpr bool traps = false; static constexpr bool tinyness_before = false; static constexpr float_round_style round_style = round_toward_zero; };}