5.0 KiB
[linalg.algs.blas3.trmm]
29 Numerics library [numerics]
29.9 Basic linear algebra algorithms [linalg]
29.9.15 BLAS 3 algorithms [linalg.algs.blas3]
29.9.15.3 In-place triangular matrix-matrix product [linalg.algs.blas3.trmm]
These functions perform an in-place matrix-matrix multiply, taking into account the Triangle and DiagonalStorage parameters that apply to the triangular matrix A ([linalg.general]).
[Note 1:
These functions correspond to the BLAS function xTRMM[bib].
â end note]
template<[in-matrix](linalg.helpers.concepts#concept:in-matrix "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InMat, class Triangle, class DiagonalStorage, [inout-matrix](linalg.helpers.concepts#concept:inout-matrix "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InOutMat> void triangular_matrix_left_product(InMat A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, [in-matrix](linalg.helpers.concepts#concept:in-matrix "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InMat, class Triangle, class DiagonalStorage, [inout-matrix](linalg.helpers.concepts#concept:inout-matrix "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InOutMat> void triangular_matrix_left_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat C);
Mandates:
If InMat has layout_blas_packed layout, then the layout's Triangle template argument has the same type as the function's Triangle template argument;
possibly-multipliable<InMat, InOutMat, InOutMat>() is true; and
compatible-static-extents<InMat, InMat>(0, 1) is true.
Preconditions:
multipliable(A, C, C) is true, and
A.extent(0) == A.extent(1) is true.
Effects: Computes a matrix Câ² such that Câ²=AC and assigns each element of Câ² to the corresponding element of C.
Complexity: O(A.extent(0)ÃA.extent(1)ÃC.extent(0)).
template<[in-matrix](linalg.helpers.concepts#concept:in-matrix "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InMat, class Triangle, class DiagonalStorage, [inout-matrix](linalg.helpers.concepts#concept:inout-matrix "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InOutMat> void triangular_matrix_right_product(InMat A, Triangle t, DiagonalStorage d, InOutMat C); template<class ExecutionPolicy, [in-matrix](linalg.helpers.concepts#concept:in-matrix "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InMat, class Triangle, class DiagonalStorage, [inout-matrix](linalg.helpers.concepts#concept:inout-matrix "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InOutMat> void triangular_matrix_right_product(ExecutionPolicy&& exec, InMat A, Triangle t, DiagonalStorage d, InOutMat C);
Mandates:
If InMat has layout_blas_packed layout, then the layout's Triangle template argument has the same type as the function's Triangle template argument;
possibly-multipliable<InOutMat, InMat, InOutMat>() is true; and
compatible-static-extents<InMat, InMat>(0, 1) is true.
Preconditions:
multipliable(C, A, C) is true, and
A.extent(0) == A.extent(1) is true.
Effects: Computes a matrix Câ² such that Câ²=CA and assigns each element of Câ² to the corresponding element of C.
Complexity: O(A.extent(0)ÃA.extent(1)ÃC.extent(0)).