Files
cppdraft_translate/cppdraft/linalg/algs/blas2/rank2.md
2025-10-25 03:02:53 +03:00

5.2 KiB
Raw Blame History

[linalg.algs.blas2.rank2]

29 Numerics library [numerics]

29.9 Basic linear algebra algorithms [linalg]

29.9.14 BLAS 2 algorithms [linalg.algs.blas2]

29.9.14.8 Symmetric and Hermitian rank-2 matrix updates [linalg.algs.blas2.rank2]

1

#

[Note 1:

These functions correspond to the BLAS functionsxSYR2,xSPR2, xHER2 and xHPR2[bib].

— end note]

2

#

The following elements apply to all functions in [linalg.algs.blas2.rank2].

3

#

Mandates:

If InOutMat has layout_blas_packed layout, then the layout's Triangle template argument has the same type as the function's Triangle template argument;

compatible-static-extents<decltype(A), decltype(A)>(0, 1) is true; and

possibly-multipliable<decltype(A), decltype(x), decltype(y)>() is true.

4

#

Preconditions:

A.extent(0) equals A.extent(1), and

multipliable(A, x, y) is true.

5

#

Complexity: O(x.extent(0)×y.extent(0)).

🔗

template<[in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5Argument concepts[linalg.helpers.concepts]") InVec1, [in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5Argument concepts[linalg.helpers.concepts]") InVec2, [possibly-packed-inout-matrix](linalg.helpers.concepts#concept:possibly-packed-inout-matrix "29.9.7.5Argument concepts[linalg.helpers.concepts]") InOutMat, class Triangle> void symmetric_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, [in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5Argument concepts[linalg.helpers.concepts]") InVec1, [in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5Argument concepts[linalg.helpers.concepts]") InVec2, [possibly-packed-inout-matrix](linalg.helpers.concepts#concept:possibly-packed-inout-matrix "29.9.7.5Argument concepts[linalg.helpers.concepts]") InOutMat, class Triangle> void symmetric_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t);

6

#

These functions perform a symmetric rank-2 update of the symmetric matrix A, taking into account the Triangle parameter that applies to A ([linalg.general]).

7

#

Effects: Computes A′ such that A′=A+xyT+yxT and assigns each element of A′ to the corresponding element of A.

🔗

template<[in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5Argument concepts[linalg.helpers.concepts]") InVec1, [in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5Argument concepts[linalg.helpers.concepts]") InVec2, [possibly-packed-inout-matrix](linalg.helpers.concepts#concept:possibly-packed-inout-matrix "29.9.7.5Argument concepts[linalg.helpers.concepts]") InOutMat, class Triangle> void hermitian_matrix_rank_2_update(InVec1 x, InVec2 y, InOutMat A, Triangle t); template<class ExecutionPolicy, [in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5Argument concepts[linalg.helpers.concepts]") InVec1, [in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5Argument concepts[linalg.helpers.concepts]") InVec2, [possibly-packed-inout-matrix](linalg.helpers.concepts#concept:possibly-packed-inout-matrix "29.9.7.5Argument concepts[linalg.helpers.concepts]") InOutMat, class Triangle> void hermitian_matrix_rank_2_update(ExecutionPolicy&& exec, InVec1 x, InVec2 y, InOutMat A, Triangle t);

8

#

These functions perform a Hermitian rank-2 update of the Hermitian matrix A, taking into account the Triangle parameter that applies to A ([linalg.general]).

9

#

Effects: Computes A′ such that A′=A+xyH+yxH and assigns each element of A′ to the corresponding element of A.