2.4 KiB
[linalg.algs.blas1.ssq]
29 Numerics library [numerics]
29.9 Basic linear algebra algorithms [linalg]
29.9.13 BLAS 1 algorithms [linalg.algs.blas1]
29.9.13.8 Scaled sum of squares of a vector's elements [linalg.algs.blas1.ssq]
template<[in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(InVec v, sum_of_squares_result<Scalar> init); template<class ExecutionPolicy, [in-vector](linalg.helpers.concepts#concept:in-vector "29.9.7.5 Argument concepts [linalg.helpers.concepts]") InVec, class Scalar> sum_of_squares_result<Scalar> vector_sum_of_squares(ExecutionPolicy&& exec, InVec v, sum_of_squares_result<Scalar> init);
[Note 1:
These functions correspond to the LAPACK function xLASSQ[bib].
â end note]
Mandates: decltype(abs-if-needed(declval<typename InVec::value_type>())) is convertible to Scalar.
Effects: Returns a value result such that
result.scaling_factor is the maximum of init.scaling_factor andabs-if-needed(x[i]) for all i in the domain of v; and
let s2init beinit.scaling_factor * init.scaling_factor * init.scaled_sum_of_squares then result.scaling_factor * result.scaling_factor * result.scaled_sum_of_squares equals the sum of s2init and the squares of abs-if-needed(x[i]) for all i in the domain of v.
Remarks: If InVec::value_type, and Scalar are all floating-point types or specializations of complex, and if Scalar has higher precision than InVec::value_type, then intermediate terms in the sum use Scalar's precision or greater.