Files
2025-10-25 03:02:53 +03:00

583 lines
36 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[unord.map]
# 23 Containers library [[containers]](./#containers)
## 23.5 Unordered associative containers [[unord]](unord#map)
### 23.5.3 Class template unordered_map [unord.map]
#### [23.5.3.1](#overview) Overview [[unord.map.overview]](unord.map.overview)
[1](#overview-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13407)
An unordered_map is an unordered associative container that
supports unique keys (an unordered_map contains at most one of each
key value) and that associates values of another typemapped_type with the keys[.](#overview-1.sentence-1)
The unordered_map class
supports forward iterators[.](#overview-1.sentence-2)
[2](#overview-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13417)
An unordered_map meets all of the requirements
of a container ([[container.reqmts]](container.reqmts "23.2.2.2Container requirements")),
of an allocator-aware container ([[container.alloc.reqmts]](container.alloc.reqmts "23.2.2.5Allocator-aware containers")), and
of an unordered associative container ([[unord.req]](unord.req "23.2.8Unordered associative containers"))[.](#overview-2.sentence-1)
It provides the operations described in the preceding requirements table for unique keys;
that is, an unordered_map supports the a_uniq operations in that table,
not the a_eq operations[.](#overview-2.sentence-2)
For an unordered_map<Key, T> the key_type is Key,
the mapped_type is T,
and the value_type is pair<const Key, T>[.](#overview-2.sentence-3)
[3](#overview-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13429)
Subclause [unord.map] only describes operations on unordered_map that
are not described in one of the requirement tables, or for which there
is additional semantic information[.](#overview-3.sentence-1)
[4](#overview-4)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13434)
The types iterator and const_iterator meet
the constexpr iterator requirements ([[iterator.requirements.general]](iterator.requirements.general "24.3.1General"))[.](#overview-4.sentence-1)
[🔗](#lib:unordered_map_)
namespace std {template<class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>>class unordered_map {public:// typesusing key_type = Key; using mapped_type = T; using value_type = pair<const Key, T>; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = typename allocator_traits<Allocator>::pointer; using const_pointer = typename allocator_traits<Allocator>::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2Requirements")using difference_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2Requirements")using iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2Requirements")using const_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2Requirements")using local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2Requirements")using const_local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2Requirements")using node_type = *unspecified*; using insert_return_type = *insert-return-type*<iterator, node_type>; // [[unord.map.cnstr]](#cnstr "23.5.3.2Constructors"), construct/copy/destroyconstexpr unordered_map(); constexpr explicit unordered_map(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<class InputIterator>constexpr unordered_map(InputIterator f, InputIterator l,
size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1Introduction[container.intro.reqmts]")<value_type> R>constexpr unordered_map(from_range_t, R&& rg, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_map(const unordered_map&); constexpr unordered_map(unordered_map&&); constexpr explicit unordered_map(const Allocator&); constexpr unordered_map(const unordered_map&, const type_identity_t<Allocator>&); constexpr unordered_map(unordered_map&&, const type_identity_t<Allocator>&); constexpr unordered_map(initializer_list<value_type> il, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_map(size_type n, const allocator_type& a): unordered_map(n, hasher(), key_equal(), a) { }constexpr unordered_map(size_type n, const hasher& hf, const allocator_type& a): unordered_map(n, hf, key_equal(), a) { }template<class InputIterator>constexpr unordered_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a): unordered_map(f, l, n, hasher(), key_equal(), a) { }template<class InputIterator>constexpr unordered_map(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a): unordered_map(f, l, n, hf, key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1Introduction[container.intro.reqmts]")<value_type> R>constexpr unordered_map(from_range_t, R&& rg, size_type n, const allocator_type& a): unordered_map(from_range, std::forward<R>(rg), n, hasher(), key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1Introduction[container.intro.reqmts]")<value_type> R>constexpr unordered_map(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a): unordered_map(from_range, std::forward<R>(rg), n, hf, key_equal(), a) { }constexpr unordered_map(initializer_list<value_type> il, size_type n, const allocator_type& a): unordered_map(il, n, hasher(), key_equal(), a) { }constexpr unordered_map(initializer_list<value_type> il, size_type n, const hasher& hf, const allocator_type& a): unordered_map(il, n, hf, key_equal(), a) { }constexpr ~unordered_map(); constexpr unordered_map& operator=(const unordered_map&); constexpr unordered_map& operator=(unordered_map&&)noexcept(allocator_traits<Allocator>::is_always_equal::value && is_nothrow_move_assignable_v<Hash> && is_nothrow_move_assignable_v<Pred>); constexpr unordered_map& operator=(initializer_list<value_type>); constexpr allocator_type get_allocator() const noexcept; // iteratorsconstexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacityconstexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // [[unord.map.modifiers]](#modifiers "23.5.3.4Modifiers"), modifierstemplate<class... Args> constexpr pair<iterator, bool> emplace(Args&&... args); template<class... Args>constexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair<iterator, bool> insert(const value_type& obj); constexpr pair<iterator, bool> insert(value_type&& obj); template<class P> constexpr pair<iterator, bool> insert(P&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template<class P> constexpr iterator insert(const_iterator hint, P&& obj); template<class InputIterator> constexpr void insert(InputIterator first, InputIterator last); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1Introduction[container.intro.reqmts]")<value_type> R>constexpr void insert_range(R&& rg); constexpr void insert(initializer_list<value_type>); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template<class K> constexpr node_type extract(K&& x); constexpr insert_return_type insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); template<class... Args>constexpr pair<iterator, bool> try_emplace(const key_type& k, Args&&... args); template<class... Args>constexpr pair<iterator, bool> try_emplace(key_type&& k, Args&&... args); template<class K, class... Args>constexpr pair<iterator, bool> try_emplace(K&& k, Args&&... args); template<class... Args>constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); template<class... Args>constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); template<class K, class... Args>constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); template<class M>constexpr pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj); template<class M>constexpr pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj); template<class K, class M>constexpr pair<iterator, bool> insert_or_assign(K&& k, M&& obj); template<class M>constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); template<class M>constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); template<class K, class M>constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template<class K> constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_map&)noexcept(allocator_traits<Allocator>::is_always_equal::value && is_nothrow_swappable_v<Hash> && is_nothrow_swappable_v<Pred>); constexpr void clear() noexcept; template<class H2, class P2>constexpr void merge(unordered_map<Key, T, H2, P2, Allocator>& source); template<class H2, class P2>constexpr void merge(unordered_map<Key, T, H2, P2, Allocator>&& source); template<class H2, class P2>constexpr void merge(unordered_multimap<Key, T, H2, P2, Allocator>& source); template<class H2, class P2>constexpr void merge(unordered_multimap<Key, T, H2, P2, Allocator>&& source); // observersconstexpr hasher hash_function() const; constexpr key_equal key_eq() const; // map operationsconstexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; template<class K>constexpr iterator find(const K& k); template<class K>constexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; template<class K>constexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; template<class K>constexpr bool contains(const K& k) const; constexpr pair<iterator, iterator> equal_range(const key_type& k); constexpr pair<const_iterator, const_iterator> equal_range(const key_type& k) const; template<class K>constexpr pair<iterator, iterator> equal_range(const K& k); template<class K>constexpr pair<const_iterator, const_iterator> equal_range(const K& k) const; // [[unord.map.elem]](#elem "23.5.3.3Element access"), element accessconstexpr mapped_type& operator[](const key_type& k); constexpr mapped_type& operator[](key_type&& k); template<class K> constexpr mapped_type& operator[](K&& k); constexpr mapped_type& at(const key_type& k); constexpr const mapped_type& at(const key_type& k) const; template<class K> constexpr mapped_type& at(const K& k); template<class K> constexpr const mapped_type& at(const K& k) const; // bucket interfaceconstexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template<class K> constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policyconstexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template<class InputIterator, class Hash = hash<*iter-key-type*<InputIterator>>, class Pred = equal_to<*iter-key-type*<InputIterator>>, class Allocator = allocator<*iter-to-alloc-type*<InputIterator>>> unordered_map(InputIterator, InputIterator, typename *see below*::size_type = *see below*,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_map<*iter-key-type*<InputIterator>, *iter-mapped-type*<InputIterator>, Hash, Pred,
Allocator>; template<ranges::[input_range](range.refinements#concept:input_range "25.4.6Other range refinements[range.refinements]") R, class Hash = hash<*range-key-type*<R>>, class Pred = equal_to<*range-key-type*<R>>, class Allocator = allocator<*range-to-alloc-type*<R>>> unordered_map(from_range_t, R&&, typename *see below*::size_type = *see below*,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_map<*range-key-type*<R>, *range-mapped-type*<R>, Hash, Pred, Allocator>; template<class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, class Allocator = allocator<pair<const Key, T>>> unordered_map(initializer_list<pair<Key, T>>, typename *see below*::size_type = *see below*, Hash = Hash(),
Pred = Pred(), Allocator = Allocator())-> unordered_map<Key, T, Hash, Pred, Allocator>; template<class InputIterator, class Allocator> unordered_map(InputIterator, InputIterator, typename *see below*::size_type, Allocator)-> unordered_map<*iter-key-type*<InputIterator>, *iter-mapped-type*<InputIterator>,
hash<*iter-key-type*<InputIterator>>,
equal_to<*iter-key-type*<InputIterator>>, Allocator>; template<class InputIterator, class Allocator> unordered_map(InputIterator, InputIterator, Allocator)-> unordered_map<*iter-key-type*<InputIterator>, *iter-mapped-type*<InputIterator>,
hash<*iter-key-type*<InputIterator>>,
equal_to<*iter-key-type*<InputIterator>>, Allocator>; template<class InputIterator, class Hash, class Allocator> unordered_map(InputIterator, InputIterator, typename *see below*::size_type, Hash, Allocator)-> unordered_map<*iter-key-type*<InputIterator>, *iter-mapped-type*<InputIterator>, Hash,
equal_to<*iter-key-type*<InputIterator>>, Allocator>; template<ranges::[input_range](range.refinements#concept:input_range "25.4.6Other range refinements[range.refinements]") R, class Allocator> unordered_map(from_range_t, R&&, typename *see below*::size_type, Allocator)-> unordered_map<*range-key-type*<R>, *range-mapped-type*<R>, hash<*range-key-type*<R>>,
equal_to<*range-key-type*<R>>, Allocator>; template<ranges::[input_range](range.refinements#concept:input_range "25.4.6Other range refinements[range.refinements]") R, class Allocator> unordered_map(from_range_t, R&&, Allocator)-> unordered_map<*range-key-type*<R>, *range-mapped-type*<R>, hash<*range-key-type*<R>>,
equal_to<*range-key-type*<R>>, Allocator>; template<ranges::[input_range](range.refinements#concept:input_range "25.4.6Other range refinements[range.refinements]") R, class Hash, class Allocator> unordered_map(from_range_t, R&&, typename *see below*::size_type, Hash, Allocator)-> unordered_map<*range-key-type*<R>, *range-mapped-type*<R>, Hash,
equal_to<*range-key-type*<R>>, Allocator>; template<class Key, class T, class Allocator> unordered_map(initializer_list<pair<Key, T>>, typename *see below*::size_type,
Allocator)-> unordered_map<Key, T, hash<Key>, equal_to<Key>, Allocator>; template<class Key, class T, class Allocator> unordered_map(initializer_list<pair<Key, T>>, Allocator)-> unordered_map<Key, T, hash<Key>, equal_to<Key>, Allocator>; template<class Key, class T, class Hash, class Allocator> unordered_map(initializer_list<pair<Key, T>>, typename *see below*::size_type, Hash,
Allocator)-> unordered_map<Key, T, Hash, equal_to<Key>, Allocator>;}
[5](#overview-5)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13730)
A size_type parameter type in an unordered_map deduction guide
refers to the size_type member type of the type deduced by the deduction guide[.](#overview-5.sentence-1)
#### [23.5.3.2](#cnstr) Constructors [[unord.map.cnstr]](unord.map.cnstr)
[🔗](#lib:unordered_map,constructor)
`constexpr unordered_map() : unordered_map(size_type(see below)) { }
constexpr explicit unordered_map(size_type n, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
`
[1](#cnstr-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13745)
*Effects*: Constructs an empty unordered_map using the
specified hash function, key equality predicate, and allocator, and
using at least n buckets[.](#cnstr-1.sentence-1)
For the default constructor,
the number of buckets is implementation-defined[.](#cnstr-1.sentence-2)
max_load_factor() returns 1.0[.](#cnstr-1.sentence-3)
[2](#cnstr-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13754)
*Complexity*: Constant[.](#cnstr-2.sentence-1)
[🔗](#lib:unordered_map,constructor_)
`template<class InputIterator>
constexpr unordered_map(InputIterator f, InputIterator l,
size_type n = see below, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template<[container-compatible-range](container.intro.reqmts#concept:container-compatible-range "23.2.2.1Introduction[container.intro.reqmts]")<value_type> R>
constexpr unordered_map(from_range_t, R&& rg,
size_type n = see below, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
constexpr unordered_map(initializer_list<value_type> il,
size_type n = see below, const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
`
[3](#cnstr-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13778)
*Effects*: Constructs an empty unordered_map using the
specified hash function, key equality predicate, and allocator, and
using at least n buckets[.](#cnstr-3.sentence-1)
If n is not
provided, the number of buckets is implementation-defined[.](#cnstr-3.sentence-2)
Then
inserts elements from the range [f, l), rg, or il,
respectively[.](#cnstr-3.sentence-3)
max_load_factor() returns 1.0[.](#cnstr-3.sentence-4)
[4](#cnstr-4)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13789)
*Complexity*: Average case linear, worst case quadratic[.](#cnstr-4.sentence-1)
#### [23.5.3.3](#elem) Element access [[unord.map.elem]](unord.map.elem)
[🔗](#lib:unordered_map,operator%5b%5d)
`constexpr mapped_type& operator[](const key_type& k);
`
[1](#elem-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13803)
*Effects*: Equivalent to: return try_emplace(k).first->second;
[🔗](#lib:unordered_map,operator%5b%5d_)
`constexpr mapped_type& operator[](key_type&& k);
`
[2](#elem-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13815)
*Effects*: Equivalent to: return try_emplace(std::move(k)).first->second;
[🔗](#lib:unordered_map,operator%5b%5d__)
`template<class K> constexpr mapped_type& operator[](K&& k);
`
[3](#elem-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13827)
*Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3Qualified names[expr.prim.id.qual]")*s* Hash::is_transparent andPred::is_transparent are valid and denote types[.](#elem-3.sentence-1)
[4](#elem-4)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13832)
*Effects*: Equivalent to: return try_emplace(std::forward<K>(k)).first->second;
[🔗](#lib:unordered_map,at)
`constexpr mapped_type& at(const key_type& k);
constexpr const mapped_type& at(const key_type& k) const;
`
[5](#elem-5)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13845)
*Returns*: A reference to x.second, where x is the (unique) element whose key is equivalent to k[.](#elem-5.sentence-1)
[6](#elem-6)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13849)
*Throws*: An exception object of type out_of_range if no such element is present[.](#elem-6.sentence-1)
[🔗](#lib:unordered_map,at_)
`template<class K> constexpr mapped_type& at(const K& k);
template<class K> constexpr const mapped_type& at(const K& k) const;
`
[7](#elem-7)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13862)
*Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3Qualified names[expr.prim.id.qual]")*s* Hash::is_transparent andPred::is_transparent are valid and denote types[.](#elem-7.sentence-1)
[8](#elem-8)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13867)
*Preconditions*: The expression find(k) is well-formed and has well-defined behavior[.](#elem-8.sentence-1)
[9](#elem-9)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13871)
*Returns*: A reference to find(k)->second[.](#elem-9.sentence-1)
[10](#elem-10)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13875)
*Throws*: An exception object of type out_of_range if find(k) == end() is true[.](#elem-10.sentence-1)
#### [23.5.3.4](#modifiers) Modifiers [[unord.map.modifiers]](unord.map.modifiers)
[🔗](#lib:unordered_map,insert)
`template<class P>
constexpr pair<iterator, bool> insert(P&& obj);
`
[1](#modifiers-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13891)
*Constraints*: is_constructible_v<value_type, P&&> is true[.](#modifiers-1.sentence-1)
[2](#modifiers-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13895)
*Effects*: Equivalent to: return emplace(std::forward<P>(obj));
[🔗](#lib:unordered_map,insert_)
`template<class P>
constexpr iterator insert(const_iterator hint, P&& obj);
`
[3](#modifiers-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13907)
*Constraints*: is_constructible_v<value_type, P&&> is true[.](#modifiers-3.sentence-1)
[4](#modifiers-4)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13911)
*Effects*: Equivalent to:return emplace_hint(hint, std::forward<P>(obj));
[🔗](#lib:try_emplace,unordered_map)
`template<class... Args>
constexpr pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);
`
[5](#modifiers-5)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13926)
*Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from piecewise_construct, forward_as_tuple(k),forward_as_tuple(std::forward<Args>(args)...)[.](#modifiers-5.sentence-1)
[6](#modifiers-6)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13932)
*Effects*: If the map already contains an element
whose key is equivalent to k,
there is no effect[.](#modifiers-6.sentence-1)
Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(k),forward_as_tuple(std::forward<Args>(args)...)[.](#modifiers-6.sentence-2)
[7](#modifiers-7)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13941)
*Returns*: In the first overload,
the bool component of the returned pair is true if and only if the insertion took place[.](#modifiers-7.sentence-1)
The returned iterator points to the map element
whose key is equivalent to k[.](#modifiers-7.sentence-2)
[8](#modifiers-8)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13949)
*Complexity*: The same as emplace and emplace_hint,
respectively[.](#modifiers-8.sentence-1)
[🔗](#lib:try_emplace,unordered_map_)
`template<class... Args>
constexpr pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);
template<class... Args>
constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);
`
[9](#modifiers-9)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13964)
*Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from piecewise_construct, forward_as_tuple(std::move(k)),forward_as_tuple(std::forward<Args>(args)...)[.](#modifiers-9.sentence-1)
[10](#modifiers-10)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13970)
*Effects*: If the map already contains an element
whose key is equivalent to k,
there is no effect[.](#modifiers-10.sentence-1)
Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(std::move(k)),forward_as_tuple(std::forward<Args>(args)...)[.](#modifiers-10.sentence-2)
[11](#modifiers-11)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13979)
*Returns*: In the first overload,
the bool component of the returned pair is true if and only if the insertion took place[.](#modifiers-11.sentence-1)
The returned iterator points to the map element
whose key is equivalent to k[.](#modifiers-11.sentence-2)
[12](#modifiers-12)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13987)
*Complexity*: The same as emplace and emplace_hint,
respectively[.](#modifiers-12.sentence-1)
[🔗](#lib:try_emplace,unordered_map__)
`template<class K, class... Args>
constexpr pair<iterator, bool> try_emplace(K&& k, Args&&... args);
template<class K, class... Args>
constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args);
`
[13](#modifiers-13)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14002)
*Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3Qualified names[expr.prim.id.qual]")*s* Hash::is_transparent andPred::is_transparent are valid and denote types[.](#modifiers-13.sentence-1)
For the first overload,is_convertible_v<K&&, const_iterator> andis_convertible_v<K&&, iterator> are both false[.](#modifiers-13.sentence-2)
[14](#modifiers-14)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14010)
*Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map frompiecewise_construct, forward_as_tuple(std::forward<K>(k)),
forward_as_tuple(std::forward<Args>
(args)...)[.](#modifiers-14.sentence-1)
[15](#modifiers-15)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14017)
*Effects*: If the map already contains an element whose key is equivalent to k,
there is no effect[.](#modifiers-15.sentence-1)
Otherwise, let h be hash_function()(k)[.](#modifiers-15.sentence-2)
Constructs an object u of type value_type with piecewise_construct, forward_as_tuple(std::forward<K>(k)),
forward_as_tuple(std::forward<Args>(args)...)[.](#modifiers-15.sentence-3)
If hash_function()(u.first) != h || contains(u.first) is true,
the behavior is undefined[.](#modifiers-15.sentence-4)
Inserts u into *this[.](#modifiers-15.sentence-5)
[16](#modifiers-16)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14029)
*Returns*: For the first overload,
the bool component of the returned pair is true if and only if the insertion took place[.](#modifiers-16.sentence-1)
The returned iterator points to the map element
whose key is equivalent to k[.](#modifiers-16.sentence-2)
[17](#modifiers-17)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14037)
*Complexity*: The same as emplace and emplace_hint, respectively[.](#modifiers-17.sentence-1)
[🔗](#lib:insert_or_assign,unordered_map)
`template<class M>
constexpr pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);
`
[18](#modifiers-18)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14051)
*Mandates*: is_assignable_v<mapped_type&, M&&> is true[.](#modifiers-18.sentence-1)
[19](#modifiers-19)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14055)
*Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from k, std::forward<M>(obj)[.](#modifiers-19.sentence-1)
[20](#modifiers-20)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14060)
*Effects*: If the map already contains an element e whose key is equivalent to k,
assigns std::forward<M>(obj) to e.second[.](#modifiers-20.sentence-1)
Otherwise inserts an object of type value_type constructed with k, std::forward<M>(obj)[.](#modifiers-20.sentence-2)
[21](#modifiers-21)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14068)
*Returns*: In the first overload,
the bool component of the returned pair is true if and only if the insertion took place[.](#modifiers-21.sentence-1)
The returned iterator points to the map element
whose key is equivalent to k[.](#modifiers-21.sentence-2)
[22](#modifiers-22)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14076)
*Complexity*: The same as emplace and emplace_hint,
respectively[.](#modifiers-22.sentence-1)
[🔗](#lib:insert_or_assign,unordered_map_)
`template<class M>
constexpr pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);
template<class M>
constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);
`
[23](#modifiers-23)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14091)
*Mandates*: is_assignable_v<mapped_type&, M&&> is true[.](#modifiers-23.sentence-1)
[24](#modifiers-24)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14095)
*Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from std::move(k), std::forward<M>(obj)[.](#modifiers-24.sentence-1)
[25](#modifiers-25)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14100)
*Effects*: If the map already contains an element e whose key is equivalent to k,
assigns std::forward<M>(obj) to e.second[.](#modifiers-25.sentence-1)
Otherwise inserts an object of type value_type constructed with std::move(k), std::forward<M>(obj)[.](#modifiers-25.sentence-2)
[26](#modifiers-26)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14108)
*Returns*: In the first overload,
the bool component of the returned pair is true if and only if the insertion took place[.](#modifiers-26.sentence-1)
The returned iterator points to the map element
whose key is equivalent to k[.](#modifiers-26.sentence-2)
[27](#modifiers-27)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14116)
*Complexity*: The same as emplace and emplace_hint,
respectively[.](#modifiers-27.sentence-1)
[🔗](#lib:insert_or_assign,unordered_map__)
`template<class K, class M>
constexpr pair<iterator, bool> insert_or_assign(K&& k, M&& obj);
template<class K, class M>
constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);
`
[28](#modifiers-28)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14131)
*Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3Qualified names[expr.prim.id.qual]")*s* Hash::is_transparent andPred::is_transparent are valid and denote types[.](#modifiers-28.sentence-1)
[29](#modifiers-29)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14136)
*Mandates*: is_assignable_v<mapped_type&, M&&> is true[.](#modifiers-29.sentence-1)
[30](#modifiers-30)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14140)
*Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from std::forward<K>
(k), std::forward<M>(obj)[.](#modifiers-30.sentence-1)
[31](#modifiers-31)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14146)
*Effects*: If the map already contains an element e whose key is equivalent to k,
assigns std::forward<M>
(obj) to e.second[.](#modifiers-31.sentence-1)
Otherwise, let h be hash_function()(k)[.](#modifiers-31.sentence-2)
Constructs an object u of type value_type with std::forward<K>(k), std::forward<M>(obj)[.](#modifiers-31.sentence-3)
If hash_function()(u.first) != h || contains(u.first) is true,
the behavior is undefined[.](#modifiers-31.sentence-4)
Inserts u into *this[.](#modifiers-31.sentence-5)
[32](#modifiers-32)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14158)
*Returns*: For the first overload,
the bool component of the returned pair is true if and only if the insertion took place[.](#modifiers-32.sentence-1)
The returned iterator points to the map element
whose key is equivalent to k[.](#modifiers-32.sentence-2)
[33](#modifiers-33)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14166)
*Complexity*: The same as emplace and emplace_hint, respectively[.](#modifiers-33.sentence-1)
#### [23.5.3.5](#erasure) Erasure [[unord.map.erasure]](unord.map.erasure)
[🔗](#lib:erase_if,unordered_map)
`template<class K, class T, class H, class P, class A, class Predicate>
constexpr typename unordered_map<K, T, H, P, A>::size_type
erase_if(unordered_map<K, T, H, P, A>& c, Predicate pred);
`
[1](#erasure-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14181)
*Effects*: Equivalent to:auto original_size = c.size();for (auto i = c.begin(), last = c.end(); i != last; ) {if (pred(*i)) { i = c.erase(i); } else {++i; }}return original_size - c.size();