3.5 KiB
[rand.dist.pois.extreme]
29 Numerics library [numerics]
29.5 Random number generation [rand]
29.5.9 Random number distribution class templates [rand.dist]
29.5.9.4 Poisson distributions [rand.dist.pois]
29.5.9.4.5 Class template extreme_value_distribution [rand.dist.pois.extreme]
An extreme_value_distribution random number distribution produces random numbers x distributed according to the probability density function in Formula 29.12.246
p(x|a,b)=1bâexp(aâxbâexp(aâxb))(29.12)
namespace std {templateclass extreme_value_distribution {public:// typesusing result_type = RealType; using param_type = unspecified; // constructor and reset functions extreme_value_distribution() : extreme_value_distribution(0.0) {}explicit extreme_value_distribution(RealType a, RealType b = 1.0); explicit extreme_value_distribution(const param_type& parm); void reset(); // equality operatorsfriend bool operator==(const extreme_value_distribution& x, const extreme_value_distribution& y); // generating functionstemplate result_type operator()(URBG& g); template result_type operator()(URBG& g, const param_type& parm); // property functions RealType a() const; RealType b() const; param_type param() const; void param(const param_type& parm); result_type min() const; result_type max() const; // inserters and extractorstemplate<class charT, class traits>friend basic_ostream<charT, traits>&operator<<(basic_ostream<charT, traits>& os, const extreme_value_distribution& x); template<class charT, class traits>friend basic_istream<charT, traits>&operator>>(basic_istream<charT, traits>& is, extreme_value_distribution& x); };}
explicit extreme_value_distribution(RealType a, RealType b = 1.0);
Preconditions: 0<b.
Remarks: a and b correspond to the respective parameters of the distribution.
RealType a() const;
Returns: The value of the a parameter with which the object was constructed.
RealType b() const;
Returns: The value of the b parameter with which the object was constructed.
The distribution corresponding to this probability density function is also known (with a possible change of variable) as the Gumbel Type I, the log-Weibull, or the Fisher-Tippett Type I distribution.