Files
2025-10-25 03:02:53 +03:00

857 lines
48 KiB
Markdown
Raw Permalink Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[class.init]
# 11 Classes [[class]](./#class)
## 11.9 Initialization [class.init]
### [11.9.1](#general) General [[class.init.general]](class.init.general)
[1](#general-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5343)
When no initializer is specified for an object of (possibly
cv-qualified) class type (or array thereof), or the initializer has
the form(),
the object is initialized as specified in [[dcl.init]](dcl.init "9.5Initializers")[.](#general-1.sentence-1)
[2](#general-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5350)
An object of class type (or array thereof) can be explicitly initialized;
see [[class.expl.init]](#class.expl.init "11.9.2Explicit initialization") and [[class.base.init]](#class.base.init "11.9.3Initializing bases and members")[.](#general-2.sentence-1)
[3](#general-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5354)
When an array of class objects is initialized
(either explicitly or implicitly) and the elements are initialized by constructor,
the constructor shall be called for each element of the array,
following the subscript order; see [[dcl.array]](dcl.array "9.3.4.5Arrays")[.](#general-3.sentence-1)
[*Note [1](#general-note-1)*:
Destructors for the array elements are called in reverse order of their
construction[.](#general-3.sentence-2)
— *end note*]
### [11.9.2](#class.expl.init) Explicit initialization [[class.expl.init]](class.expl.init)
[1](#class.expl.init-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5369)
An object of class type can be initialized with a parenthesized[*expression-list*](expr.post.general#nt:expression-list "7.6.1.1General[expr.post.general]"),
where the[*expression-list*](expr.post.general#nt:expression-list "7.6.1.1General[expr.post.general]") is construed as an argument list for a constructor
that is called to initialize the object[.](#class.expl.init-1.sentence-1)
Alternatively, a single[*assignment-expression*](expr.assign#nt:assignment-expression "7.6.19Assignment and compound assignment operators[expr.assign]") can be specified as an[*initializer*](dcl.init.general#nt:initializer "9.5.1General[dcl.init.general]") using the= form of initialization[.](#class.expl.init-1.sentence-2)
Either direct-initialization semantics or copy-initialization semantics apply;
see [[dcl.init]](dcl.init "9.5Initializers")[.](#class.expl.init-1.sentence-3)
[*Example [1](#class.expl.init-example-1)*: struct complex { complex();
complex(double);
complex(double,double);};
complex sqrt(complex,complex);
complex a(1); // initialized by calling complex(double) with argument 1 complex b = a; // initialized as a copy of a complex c = complex(1,2); // initialized by calling complex(double,double) with arguments 1 and 2 complex d = sqrt(b,c); // initialized by calling sqrt(complex,complex) with d as its result object complex e; // initialized by calling complex() complex f = 3; // initialized by calling complex(double) with argument 3 complex g = { 1, 2 }; // initialized by calling complex(double, double) with arguments 1 and 2 — *end example*]
[*Note [1](#class.expl.init-note-1)*:
Overloading of the assignment operator ([[over.assign]](over.assign "12.4.3.2Simple assignment"))
has no effect on initialization[.](#class.expl.init-1.sentence-4)
— *end note*]
[2](#class.expl.init-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5410)
An object of class type can also be initialized by a[*braced-init-list*](dcl.init.general#nt:braced-init-list "9.5.1General[dcl.init.general]")[.](#class.expl.init-2.sentence-1)
List-initialization semantics apply;
see [[dcl.init]](dcl.init "9.5Initializers") and [[dcl.init.list]](dcl.init.list "9.5.5List-initialization")[.](#class.expl.init-2.sentence-2)
[*Example [2](#class.expl.init-example-2)*: complex v[6] = { 1, complex(1,2), complex(), 2 };
Here,complex::complex(double) is called for the initialization ofv[0] andv[3],complex::complex(double, double) is called for the initialization ofv[1],complex::complex() is called for the initialization ofv[2],v[4],
andv[5][.](#class.expl.init-2.sentence-3)
For another example,
struct X {int i; float f;
complex c;} x = { 99, 88.8, 77.7 };
Here,x.i is initialized with 99,x.f is initialized with 88.8, andcomplex::complex(double) is called for the initialization ofx.c[.](#class.expl.init-2.sentence-5)
— *end example*]
[*Note [2](#class.expl.init-note-2)*:
Braces can be elided in the[*initializer-list*](dcl.init.general#nt:initializer-list "9.5.1General[dcl.init.general]") for any aggregate, even if the aggregate has members of a class type with
user-defined type conversions; see [[dcl.init.aggr]](dcl.init.aggr "9.5.2Aggregates")[.](#class.expl.init-2.sentence-6)
— *end note*]
[3](#class.expl.init-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5462)
[*Note [3](#class.expl.init-note-3)*:
IfT is a class type with no default constructor,
any initializing declaration of an object of typeT (or array thereof) is ill-formed if no[*initializer*](dcl.init.general#nt:initializer "9.5.1General[dcl.init.general]") is explicitly specified (see [class.init] and [[dcl.init]](dcl.init "9.5Initializers"))[.](#class.expl.init-3.sentence-1)
— *end note*]
[4](#class.expl.init-4)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5474)
[*Note [4](#class.expl.init-note-4)*:
The order in which objects with static or thread storage duration
are initialized is described in [[basic.start.dynamic]](basic.start.dynamic "6.10.3.3Dynamic initialization of non-block variables") and [[stmt.dcl]](stmt.dcl "8.10Declaration statement")[.](#class.expl.init-4.sentence-1)
— *end note*]
### [11.9.3](#class.base.init) Initializing bases and members [[class.base.init]](class.base.init)
[1](#class.base.init-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5485)
In the definition of a constructor for a class,
initializers for direct and virtual base class subobjects and
non-static data members can be specified by a[*ctor-initializer*](#nt:ctor-initializer "11.9.3Initializing bases and members[class.base.init]"),
which has the form
[ctor-initializer:](#nt:ctor-initializer "11.9.3Initializing bases and members[class.base.init]")
: [*mem-initializer-list*](#nt:mem-initializer-list "11.9.3Initializing bases and members[class.base.init]")
[mem-initializer-list:](#nt:mem-initializer-list "11.9.3Initializing bases and members[class.base.init]")
[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") ...opt
[*mem-initializer-list*](#nt:mem-initializer-list "11.9.3Initializing bases and members[class.base.init]") , [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") ...opt
[mem-initializer:](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]")
[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") ( [*expression-list*](expr.post.general#nt:expression-list "7.6.1.1General[expr.post.general]")opt )
[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") [*braced-init-list*](dcl.init.general#nt:braced-init-list "9.5.1General[dcl.init.general]")
[mem-initializer-id:](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]")
[*class-or-decltype*](class.derived.general#nt:class-or-decltype "11.7.1General[class.derived.general]")
[*identifier*](lex.name#nt:identifier "5.11Identifiers[lex.name]")
[2](#class.base.init-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5514)
Lookup for an unqualified name in a [*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") ignores the constructor's function parameter scope[.](#class.base.init-2.sentence-1)
[*Note [1](#class.base.init-note-1)*:
If the constructor's class contains a member with the same name as a direct
or virtual base class of the class, a[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") naming the member or base class and composed of a single identifier
refers to the class member[.](#class.base.init-2.sentence-2)
A[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") for the hidden base class can be specified using a qualified name[.](#class.base.init-2.sentence-3)
— *end note*]
Unless the[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") names the constructor's class,
a non-static data member of the constructor's class, or
a direct or virtual base of that class,
the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") is ill-formed[.](#class.base.init-2.sentence-4)
[3](#class.base.init-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5536)
A[*mem-initializer-list*](#nt:mem-initializer-list "11.9.3Initializing bases and members[class.base.init]") can initialize a base class using any [*class-or-decltype*](class.derived.general#nt:class-or-decltype "11.7.1General[class.derived.general]") that denotes that base class type[.](#class.base.init-3.sentence-1)
[*Example [1](#class.base.init-example-1)*: struct A { A(); };typedef A global_A;struct B { };struct C: public A, public B { C(); };
C::C(): global_A() { } // mem-initializer for base A — *end example*]
[4](#class.base.init-4)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5550)
If a[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") is ambiguous because it designates both a direct non-virtual base class and
an indirect virtual base class, the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") is ill-formed[.](#class.base.init-4.sentence-1)
[*Example [2](#class.base.init-example-2)*: struct A { A(); };struct B: public virtual A { };struct C: public A, public B { C(); };
C::C(): A() { } // error: which A? — *end example*]
[5](#class.base.init-5)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5566)
A[*ctor-initializer*](#nt:ctor-initializer "11.9.3Initializing bases and members[class.base.init]") may initialize a variant member of the
constructor's class[.](#class.base.init-5.sentence-1)
If a[*ctor-initializer*](#nt:ctor-initializer "11.9.3Initializing bases and members[class.base.init]") specifies more than one[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") for the same member or for the same base class,
the[*ctor-initializer*](#nt:ctor-initializer "11.9.3Initializing bases and members[class.base.init]") is ill-formed[.](#class.base.init-5.sentence-2)
[6](#class.base.init-6)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5580)
A [*mem-initializer-list*](#nt:mem-initializer-list "11.9.3Initializing bases and members[class.base.init]") can delegate to another
constructor of the constructor's class using any[*class-or-decltype*](class.derived.general#nt:class-or-decltype "11.7.1General[class.derived.general]") that denotes the constructor's class itself[.](#class.base.init-6.sentence-1)
If a[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") designates the constructor's class,
it shall be the only [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]"); the constructor
is a [*delegating constructor*](#def:constructor,delegating "11.9.3Initializing bases and members[class.base.init]"), and the constructor selected by the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") is the [*target constructor*](#def:constructor,target "11.9.3Initializing bases and members[class.base.init]")[.](#class.base.init-6.sentence-2)
The target constructor is selected by overload resolution[.](#class.base.init-6.sentence-3)
Once the target constructor returns, the body of the delegating constructor
is executed[.](#class.base.init-6.sentence-4)
If a constructor delegates to itself directly or indirectly,
the program is ill-formed, no diagnostic required[.](#class.base.init-6.sentence-5)
[*Example [3](#class.base.init-example-3)*: struct C { C( int ) { } // #1: non-delegating constructor C(): C(42) { } // #2: delegates to #1 C( char c ) : C(42.0) { } // #3: ill-formed due to recursion with #4 C( double d ) : C('a') { } // #4: ill-formed due to recursion with #3}; — *end example*]
[7](#class.base.init-7)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5603)
The[*expression-list*](expr.post.general#nt:expression-list "7.6.1.1General[expr.post.general]") or [*braced-init-list*](dcl.init.general#nt:braced-init-list "9.5.1General[dcl.init.general]") in a[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") is used to initialize the
designated subobject (or, in the case of a delegating constructor, the complete class object)
according to the initialization rules of [[dcl.init]](dcl.init "9.5Initializers") for direct-initialization[.](#class.base.init-7.sentence-1)
[*Example [4](#class.base.init-example-4)*: struct B1 { B1(int); /* ... */ };struct B2 { B2(int); /* ... */ };struct D : B1, B2 { D(int);
B1 b; const int c;};
D::D(int a) : B2(a+1), B1(a+2), c(a+3), b(a+4) { /* ... */ } D d(10); — *end example*]
[*Note [2](#class.base.init-note-2)*:
The initialization
performed by each [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") constitutes a full-expression ([[intro.execution]](intro.execution "6.10.1Sequential execution"))[.](#class.base.init-7.sentence-2)
Any expression in
a[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") is evaluated as part of the full-expression that performs the initialization[.](#class.base.init-7.sentence-3)
— *end note*]
A [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") where the [*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") denotes
a virtual base class is ignored during execution of a constructor of any class that is
not the most derived class[.](#class.base.init-7.sentence-4)
[8](#class.base.init-8)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5641)
A temporary expression bound to a reference member in a [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") is ill-formed[.](#class.base.init-8.sentence-1)
[*Example [5](#class.base.init-example-5)*: struct A { A() : v(42) { } // errorconst int& v;}; — *end example*]
[9](#class.base.init-9)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5653)
In a non-delegating constructor
other than an implicitly-defined copy/move constructor ([[class.copy.ctor]](class.copy.ctor "11.4.5.3Copy/move constructors")),
if a given potentially constructed subobject is not designated by a[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") (including the case where there is no[*mem-initializer-list*](#nt:mem-initializer-list "11.9.3Initializing bases and members[class.base.init]") because the constructor has no[*ctor-initializer*](#nt:ctor-initializer "11.9.3Initializing bases and members[class.base.init]")),
then
- [(9.1)](#class.base.init-9.1)
if the entity is a non-static data member that has
a default member initializer ([[class.mem]](class.mem "11.4Class members")) and either
* [(9.1.1)](#class.base.init-9.1.1)
the constructor's class is a union ([[class.union]](class.union "11.5Unions")), and no other variant
member of that union is designated by a [*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]") or
* [(9.1.2)](#class.base.init-9.1.2)
the constructor's class is not a union, and, if the entity is a member of an
anonymous union, no other member of that union is designated by a[*mem-initializer-id*](#nt:mem-initializer-id "11.9.3Initializing bases and members[class.base.init]"),
the entity is initialized from its default member initializer
as specified in [[dcl.init]](dcl.init "9.5Initializers");
- [(9.2)](#class.base.init-9.2)
otherwise, if the entity is an anonymous union or a variant member ([[class.union.anon]](class.union.anon "11.5.2Anonymous unions")), no initialization is performed;
- [(9.3)](#class.base.init-9.3)
otherwise, the entity is default-initialized ([[dcl.init]](dcl.init "9.5Initializers"))[.](#class.base.init-9.sentence-1)
[*Note [3](#class.base.init-note-3)*:
An abstract class ([[class.abstract]](class.abstract "11.7.4Abstract classes")) is never a most derived
class, thus its constructors never initialize virtual base classes, therefore the
corresponding [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]")*s* can be omitted[.](#class.base.init-9.sentence-2)
— *end note*]
An attempt to initialize more than one non-static data member of a union renders the
program ill-formed[.](#class.base.init-9.sentence-3)
[*Note [4](#class.base.init-note-4)*:
After the call to a constructor for classX for an object with automatic or dynamic storage duration
has completed, if
the constructor was not invoked as part of value-initialization and
a member ofX is neither initialized nor
given a value
during execution of the [*compound-statement*](stmt.block#nt:compound-statement "8.4Compound statement or block[stmt.block]") of the body of the constructor,
the member has an indeterminate or erroneous value ([[basic.indet]](basic.indet "6.8.5Indeterminate and erroneous values"))[.](#class.base.init-9.sentence-4)
— *end note*]
[*Example [6](#class.base.init-example-6)*: struct A { A();};
struct B { B(int);};
struct C { C() { } // initializes members as follows: A a; // OK, calls A::A()const B b; // error: B has no default constructorint i; // OK, i has indeterminate or erroneous valueint j = 5; // OK, j has the value 5}; — *end example*]
[10](#class.base.init-10)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5724)
If a given non-static data member has both a default member initializer
and a [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]"), the initialization specified by the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") is performed, and the non-static data member's
default member initializer is ignored[.](#class.base.init-10.sentence-1)
[*Example [7](#class.base.init-example-7)*:
Givenstruct A {int i = /* some integer expression with side effects */ ;
A(int arg) : i(arg) { }// ...}; the A(int) constructor will simply initialize i to the value ofarg, and theside effects in i's default member initializer
will not take place[.](#class.base.init-10.sentence-2)
— *end example*]
[11](#class.base.init-11)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5748)
A temporary expression bound to a reference member from a
default member initializer is ill-formed[.](#class.base.init-11.sentence-1)
[*Example [8](#class.base.init-example-8)*: struct A { A() = default; // OK A(int v) : v(v) { } // OKconst int& v = 42; // OK};
A a1; // error: ill-formed binding of temporary to reference A a2(1); // OK, unfortunately — *end example*]
[12](#class.base.init-12)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5763)
In a non-delegating constructor, the destructor for each potentially constructed
subobject of class type is potentially invoked ([[class.dtor]](class.dtor "11.4.7Destructors"))[.](#class.base.init-12.sentence-1)
[*Note [5](#class.base.init-note-5)*:
This provision ensures that destructors can be called for fully-constructed
subobjects in case an exception is thrown ([[except.ctor]](except.ctor "14.3Stack unwinding"))[.](#class.base.init-12.sentence-2)
— *end note*]
[13](#class.base.init-13)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5771)
In a non-delegating constructor, initialization
proceeds in the following order:
- [(13.1)](#class.base.init-13.1)
First, and only for the constructor of the most derived class ([[intro.object]](intro.object "6.8.2Object model")),
virtual base classes are initialized in the order they appear on a
depth-first left-to-right traversal of the directed acyclic graph of
base classes,
where “left-to-right” is the order of appearance of the base classes
in the derived class[*base-specifier-list*](class.derived.general#nt:base-specifier-list "11.7.1General[class.derived.general]")[.](#class.base.init-13.1.sentence-1)
- [(13.2)](#class.base.init-13.2)
Then, direct base classes are initialized in declaration order
as they appear in the[*base-specifier-list*](class.derived.general#nt:base-specifier-list "11.7.1General[class.derived.general]") (regardless of the order of the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]")*s*)[.](#class.base.init-13.2.sentence-1)
- [(13.3)](#class.base.init-13.3)
Then, non-static data members are initialized in the order
they were declared in the class definition
(again regardless of the order of the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]")*s*)[.](#class.base.init-13.3.sentence-1)
- [(13.4)](#class.base.init-13.4)
Finally, the [*compound-statement*](stmt.block#nt:compound-statement "8.4Compound statement or block[stmt.block]") of the constructor
body is executed[.](#class.base.init-13.4.sentence-1)
[*Note [6](#class.base.init-note-6)*:
The declaration order is mandated to ensure that base and member
subobjects are destroyed in the reverse order of initialization[.](#class.base.init-13.sentence-2)
— *end note*]
[14](#class.base.init-14)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5807)
[*Example [9](#class.base.init-example-9)*: struct V { V();
V(int);};
struct A : virtual V { A();
A(int);};
struct B : virtual V { B();
B(int);};
struct C : A, B, virtual V { C();
C(int);};
A::A(int i) : V(i) { /* ... */ } B::B(int i) { /* ... */ } C::C(int i) { /* ... */ } V v(1); // use V(int) A a(2); // use V(int) B b(3); // use V() C c(4); // use V() — *end example*]
[15](#class.base.init-15)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5841)
[*Note [7](#class.base.init-note-7)*:
The [*expression-list*](expr.post.general#nt:expression-list "7.6.1.1General[expr.post.general]") or [*braced-init-list*](dcl.init.general#nt:braced-init-list "9.5.1General[dcl.init.general]") of a [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") is in the function parameter scope of the constructor
and can use this to refer to the object being initialized[.](#class.base.init-15.sentence-1)
— *end note*]
[*Example [10](#class.base.init-example-10)*: class X {int a; int b; int i; int j;public:const int& r;
X(int i): r(a), b(i), i(i), j(this->i) { }};
initializesX::r to refer toX::a,
initializesX::b with the value of the constructor parameteri,
initializesX::i with the value of the constructor parameteri,
and initializesX::j with the value ofX::i;
this takes place each time an object of classX is created[.](#class.base.init-15.sentence-2)
— *end example*]
[16](#class.base.init-16)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5883)
Member functions (including virtual member functions, [[class.virtual]](class.virtual "11.7.3Virtual functions")) can be
called for an object under construction or destruction[.](#class.base.init-16.sentence-1)
Similarly, an object under construction or destruction can be the operand of thetypeid operator ([[expr.typeid]](expr.typeid "7.6.1.8Type identification")) or of adynamic_cast ([[expr.dynamic.cast]](expr.dynamic.cast "7.6.1.7Dynamic cast"))[.](#class.base.init-16.sentence-2)
However, if these operations are performed
during evaluation of
- [(16.1)](#class.base.init-16.1)
a [*ctor-initializer*](#nt:ctor-initializer "11.9.3Initializing bases and members[class.base.init]") (or in a function called directly or indirectly from a[*ctor-initializer*](#nt:ctor-initializer "11.9.3Initializing bases and members[class.base.init]"))
before all the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]")*s* for base classes have completed,
- [(16.2)](#class.base.init-16.2)
a precondition assertion of a constructor, or
- [(16.3)](#class.base.init-16.3)
a postcondition assertion of a destructor ([[dcl.contract.func]](dcl.contract.func "9.4.1General")),
the program has undefined behavior[.](#class.base.init-16.sentence-3)
[*Example [11](#class.base.init-example-11)*: class A {public: A(int);};
class B : public A {int j;public:int f();
B() : A(f()), // undefined behavior: calls member function but base A not yet initialized j(f()) { } // well-defined: bases are all initialized};
class C {public: C(int);};
class D : public B, C {int i;public: D() : C(f()), // undefined behavior: calls member function but base C not yet initialized i(f()) { } // well-defined: bases are all initialized}; — *end example*]
[17](#class.base.init-17)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5936)
[*Note [8](#class.base.init-note-8)*:
[[class.cdtor]](#class.cdtor "11.9.5Construction and destruction") describes the results of virtual function calls,typeid anddynamic_casts
during construction for the well-defined cases;
that is, describes the polymorphic behavior
of an object under construction[.](#class.base.init-17.sentence-1)
— *end note*]
[18](#class.base.init-18)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5947)
A [*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") followed by an ellipsis is
a pack expansion ([[temp.variadic]](temp.variadic "13.7.4Variadic templates")) that initializes the base
classes specified by a pack expansion in the [*base-specifier-list*](class.derived.general#nt:base-specifier-list "11.7.1General[class.derived.general]") for the class[.](#class.base.init-18.sentence-1)
[*Example [12](#class.base.init-example-12)*: template<class... Mixins>class X : public Mixins... {public: X(const Mixins&... mixins) : Mixins(mixins)... { }}; — *end example*]
### [11.9.4](#class.inhctor.init) Initialization by inherited constructor [[class.inhctor.init]](class.inhctor.init)
[1](#class.inhctor.init-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L5966)
When a constructor for type B is invoked
to initialize an object of a different type D (that is, when the constructor was inherited ([[namespace.udecl]](namespace.udecl "9.10The using declaration"))),
initialization proceeds as if a defaulted default constructor
were used to initialize the D object and
each base class subobject from which the constructor was inherited,
except that the B subobject is initialized
by the inherited constructor
if the base class subobject were to be initialized
as part of the D object ([[class.base.init]](#class.base.init "11.9.3Initializing bases and members"))[.](#class.inhctor.init-1.sentence-1)
The invocation of the inherited constructor,
including the evaluation of any arguments,
is omitted if the B subobject is not to be initialized
as part of the D object[.](#class.inhctor.init-1.sentence-2)
The complete initialization is considered to be a single function call;
in particular, unless omitted,
the initialization of the inherited constructor's parameters
is sequenced before the initialization of any part of the D object[.](#class.inhctor.init-1.sentence-3)
[*Example [1](#class.inhctor.init-example-1)*: struct B1 { B1(int, ...) { }};
struct B2 { B2(double) { }};
int get();
struct D1 : B1 {using B1::B1; // inherits B1(int, ...)int x; int y = get();};
void test() { D1 d(2, 3, 4); // OK, B1 is initialized by calling B1(2, 3, 4),// then d.x is default-initialized (no initialization is performed),// then d.y is initialized by calling get() D1 e; // error: D1 has no default constructor}struct D2 : B2 {using B2::B2;
B1 b;};
D2 f(1.0); // error: B1 has no default constructorstruct W { W(int); };struct X : virtual W { using W::W; X() = delete; };struct Y : X { using X::X; };struct Z : Y, virtual W { using Y::Y; };
Z z(0); // OK, initialization of Y does not invoke default constructor of Xtemplate<class T> struct Log : T {using T::T; // inherits all constructors from class T~Log() { std::clog << "Destroying wrapper" << std::endl; }};
Class template Log wraps any class and forwards all of its constructors,
while writing a message to the standard log
whenever an object of class Log is destroyed[.](#class.inhctor.init-1.sentence-4)
— *end example*]
[*Example [2](#class.inhctor.init-example-2)*: struct V { V() = default; V(int); };struct Q { Q(); };struct A : virtual V, Q {using V::V;
A() = delete;};int bar() { return 42; }struct B : A { B() : A(bar()) {} // OK};struct C : B {};void foo() { C c; } // bar is not invoked, because the V subobject is not initialized as part of B — *end example*]
[2](#class.inhctor.init-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6050)
If the constructor was inherited from multiple base class subobjects
of type B, the program is ill-formed[.](#class.inhctor.init-2.sentence-1)
[*Example [3](#class.inhctor.init-example-3)*: struct A { A(int); };struct B : A { using A::A; };
struct C1 : B { using B::B; };struct C2 : B { using B::B; };
struct D1 : C1, C2 {using C1::C1; using C2::C2;};
struct V1 : virtual B { using B::B; };struct V2 : virtual B { using B::B; };
struct D2 : V1, V2 {using V1::V1; using V2::V2;};
D1 d1(0); // error: ambiguous D2 d2(0); // OK, initializes virtual B base class, which initializes the A base class// then initializes the V1 and V2 base classes as if by a defaulted default constructorstruct M { M(); M(int); };struct N : M { using M::M; };struct O : M {};struct P : N, O { using N::N; using O::O; };
P p(0); // OK, use M(0) to initialize N's base class,// use M() to initialize O's base class — *end example*]
[3](#class.inhctor.init-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6087)
When an object is initialized by an inherited constructor,
initialization of the object is complete
when the initialization of all subobjects is complete[.](#class.inhctor.init-3.sentence-1)
### [11.9.5](#class.cdtor) Construction and destruction [[class.cdtor]](class.cdtor)
[1](#class.cdtor-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6097)
For an object with a non-trivial constructor, referring to any non-static member
or base class of the object before the constructor begins execution results in
undefined behavior[.](#class.cdtor-1.sentence-1)
For an object with a non-trivial destructor, referring to
any non-static member or base class of the object after the destructor finishes
execution results in undefined behavior[.](#class.cdtor-1.sentence-2)
[*Example [1](#class.cdtor-example-1)*: struct X { int i; };struct Y : X { Y(); }; // non-trivialstruct A { int a; };struct B : public A { int j; Y y; }; // non-trivialextern B bobj;
B* pb = &bobj; // OKint* p1 = &bobj.a; // undefined behavior: refers to base class memberint* p2 = &bobj.y.i; // undefined behavior: refers to member's member A* pa = &bobj; // undefined behavior: upcast to a base class type B bobj; // definition of bobjextern X xobj;int* p3 = &xobj.i; // OK, all constructors of X are trivial X xobj;
For another example,struct W { int j; };struct X : public virtual W { };struct Y {int* p;
X x;
Y() : p(&x.j) { // undefined, x is not yet constructed}};
— *end example*]
[2](#class.cdtor-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6137)
During the construction of an object,
if the value of any of its subobjects
or any element of its object representation
is accessed through a glvalue that is not obtained, directly or indirectly, from
the constructor'sthis pointer, the value thus obtained is unspecified[.](#class.cdtor-2.sentence-1)
[*Example [2](#class.cdtor-example-2)*: struct C;void no_opt(C*);
struct C {int c;
C() : c(0) { no_opt(this); }};
const C cobj;
void no_opt(C* cptr) {int i = cobj.c * 100; // value of cobj.c is unspecified cptr->c = 1;
cout << cobj.c * 100 // value of cobj.c is unspecified<< '\n';}extern struct D d;struct D { D(int a) : a(a), b(d.a) {}int a, b;};
D d = D(1); // value of d.b is unspecified — *end example*]
[3](#class.cdtor-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6173)
To explicitly or implicitly convert a pointer (a glvalue) referring to
an object of classX to a pointer (reference) to a direct or indirect base classB ofX,
the construction ofX and the construction of all of its direct or indirect bases that directly or
indirectly derive fromB shall have started and the destruction of these classes shall not have
completed, otherwise the conversion results in undefined behavior[.](#class.cdtor-3.sentence-1)
To form a pointer to (or access the value of) a direct non-static member of
an objectobj,
the construction ofobj shall have started and its destruction shall not have completed,
otherwise the computation of the pointer value (or accessing the member
value) results in undefined behavior[.](#class.cdtor-3.sentence-2)
[*Example [3](#class.cdtor-example-3)*: struct A { };struct B : virtual A { };struct C : B { };struct D : virtual A { D(A*); };struct X { X(A*); };
struct E : C, D, X { E() : D(this), // undefined behavior: upcast from E* to A* might use path E* → D* → A*// but D is not constructed// “D((C*)this)'' would be defined: E* → C* is defined because E() has started,// and C* → A* is defined because C is fully constructed X(this) {} // defined: upon construction of X, C/B/D/A sublattice is fully constructed}; — *end example*]
[4](#class.cdtor-4)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6218)
Member functions, including virtual functions ([[class.virtual]](class.virtual "11.7.3Virtual functions")), can be called
during construction or destruction ([[class.base.init]](#class.base.init "11.9.3Initializing bases and members"))[.](#class.cdtor-4.sentence-1)
When a virtual function is called directly or indirectly from a constructor
or from a destructor,
including during the construction or destruction of the class's non-static data
members,
or during the evaluation of
a postcondition assertion of a constructor or
a precondition assertion of a destructor ([[dcl.contract.func]](dcl.contract.func "9.4.1General")),
and the object to which the call applies is the object (call it x) under construction or
destruction,
the function called is the
final overrider in the constructor's or destructor's class and not one
overriding it in a more-derived class[.](#class.cdtor-4.sentence-2)
If the virtual function call uses an explicit class member access ([[expr.ref]](expr.ref "7.6.1.5Class member access"))
and the object expression refers to
the complete object of x or one of that object's base class subobjects
but not x or one of its base class subobjects, the behavior
is undefined[.](#class.cdtor-4.sentence-3)
[*Example [4](#class.cdtor-example-4)*: struct V {virtual void f(); virtual void g();};
struct A : virtual V {virtual void f();};
struct B : virtual V {virtual void g();
B(V*, A*);};
struct D : A, B {virtual void f(); virtual void g();
D() : B((A*)this, this) { }};
B::B(V* v, A* a) { f(); // calls V::f, not A::f g(); // calls B::g, not D::g v->g(); // v is base of B, the call is well-defined, calls B::g a->f(); // undefined behavior: a's type not a base of B} — *end example*]
[5](#class.cdtor-5)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6273)
Thetypeid operator ([[expr.typeid]](expr.typeid "7.6.1.8Type identification")) can be used during construction or destruction ([[class.base.init]](#class.base.init "11.9.3Initializing bases and members"))[.](#class.cdtor-5.sentence-1)
Whentypeid is used in a constructor (including the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") or default member initializer ([[class.mem]](class.mem "11.4Class members"))
for a non-static data member)
or in a destructor, or used in a function called (directly or indirectly) from
a constructor or destructor, if the operand oftypeid refers to the object under construction or destruction,typeid yields thestd::type_info object representing the constructor or destructor's class[.](#class.cdtor-5.sentence-2)
If the operand oftypeid refers to the object under construction or destruction and the static type of
the operand is neither the constructor or destructor's class nor one of its
bases, the behavior is undefined[.](#class.cdtor-5.sentence-3)
[6](#class.cdtor-6)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6300)
dynamic_casts ([[expr.dynamic.cast]](expr.dynamic.cast "7.6.1.7Dynamic cast")) can be used during construction
or destruction ([[class.base.init]](#class.base.init "11.9.3Initializing bases and members"))[.](#class.cdtor-6.sentence-1)
When adynamic_cast is used in a constructor (including the[*mem-initializer*](#nt:mem-initializer "11.9.3Initializing bases and members[class.base.init]") or default member initializer
for a non-static data member)
or in a destructor, or used in a function called (directly or indirectly) from
a constructor or destructor, if the operand of thedynamic_cast refers to the object under construction or destruction, this object is
considered to be a most derived object that has the type of the constructor or
destructor's class[.](#class.cdtor-6.sentence-2)
If the operand of thedynamic_cast refers to the object under construction or destruction and the static type of
the operand is not a pointer to or object of the constructor or destructor's
own class or one of its bases, thedynamic_cast results in undefined behavior[.](#class.cdtor-6.sentence-3)
[*Example [5](#class.cdtor-example-5)*: struct V {virtual void f();};
struct A : virtual V { };
struct B : virtual V { B(V*, A*);};
struct D : A, B { D() : B((A*)this, this) { }};
B::B(V* v, A* a) {typeid(*this); // type_info for Btypeid(*v); // well-defined: *v has type V, a base of B yields type_info for Btypeid(*a); // undefined behavior: type A not a base of Bdynamic_cast<B*>(v); // well-defined: v of type V*, V base of B results in B*dynamic_cast<B*>(a); // undefined behavior: a has type A*, A not a base of B} — *end example*]
### [11.9.6](#class.copy.elision) Copy/move elision [[class.copy.elision]](class.copy.elision)
[1](#class.copy.elision-1)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6354)
When certain criteria are met, an implementation is
allowed to omit the creation of a class object from
a source object of the same type (ignoring cv-qualification),
even if the selected constructor and/or the
destructor for the object haveside effects[.](#class.copy.elision-1.sentence-1)
In such cases, the
implementation treats the source and target of the
omitted initialization as simply two different ways of
referring to the same object[.](#class.copy.elision-1.sentence-2)
If the first parameter of the
selected constructor is an rvalue reference to the object's type,
the destruction of that object occurs when the target would have been destroyed;
otherwise, the destruction occurs at the later of the times when the
two objects would have been destroyed without the
optimization[.](#class.copy.elision-1.sentence-3)
[*Note [1](#class.copy.elision-note-1)*:
Because only one object is destroyed instead of two,
and the creation of one object is omitted,
there is still one object destroyed for each one constructed[.](#class.copy.elision-1.sentence-4)
— *end note*]
This elision of object creation, called[*copy elision*](#def:copy_elision),
is permitted in the
following circumstances (which may be combined to
eliminate multiple copies):
- [(1.1)](#class.copy.elision-1.1)
in a return statement ([[stmt.return]](stmt.return "8.8.4The return statement")) in
a function with a class return type,
when the [*expression*](expr.comma#nt:expression "7.6.20Comma operator[expr.comma]") is the name of a non-volatile
object o with automatic storage duration (other than a function parameter or a variable
introduced by the [*exception-declaration*](except.pre#nt:exception-declaration "14.1Preamble[except.pre]") of a[*handler*](except.pre#nt:handler "14.1Preamble[except.pre]") ([[except.handle]](except.handle "14.4Handling an exception"))),
the copy-initialization of the result object can be
omitted by constructing o directly
into the function call's result object;
- [(1.2)](#class.copy.elision-1.2)
in a [*throw-expression*](expr.throw#nt:throw-expression "7.6.18Throwing an exception[expr.throw]") ([[expr.throw]](expr.throw "7.6.18Throwing an exception")), when the operand
is the name of a non-volatile object o with automatic storage duration
(other than a function parameter or
a variable introduced by
the [*exception-declaration*](except.pre#nt:exception-declaration "14.1Preamble[except.pre]") of a [*handler*](except.pre#nt:handler "14.1Preamble[except.pre]"))
that belongs to a scope that does not contain
the innermost enclosing [*compound-statement*](stmt.block#nt:compound-statement "8.4Compound statement or block[stmt.block]") associated with a [*try-block*](except.pre#nt:try-block "14.1Preamble[except.pre]") (if there is one),
the copy-initialization of the exception object can be omitted by
constructing o directly into the exception object;
- [(1.3)](#class.copy.elision-1.3)
in a [coroutine](dcl.fct.def.coroutine "9.6.4Coroutine definitions[dcl.fct.def.coroutine]"), a copy of a coroutine parameter
can be omitted and references to that copy replaced with references to the
corresponding parameter if the meaning of the program will be unchanged except for
the execution of a constructor and destructor for the parameter copy object;
- [(1.4)](#class.copy.elision-1.4)
when the [*exception-declaration*](except.pre#nt:exception-declaration "14.1Preamble[except.pre]") of a[*handler*](except.pre#nt:handler "14.1Preamble[except.pre]") ([[except.handle]](except.handle "14.4Handling an exception")) declares an object o,
the copy-initialization of o can be omitted by treating
the [*exception-declaration*](except.pre#nt:exception-declaration "14.1Preamble[except.pre]") as an alias for the exception
object if the meaning of the program will be unchanged except for the execution
of constructors and destructors for the object declared by the[*exception-declaration*](except.pre#nt:exception-declaration "14.1Preamble[except.pre]")[.](#class.copy.elision-1.sentence-5)
[*Note [2](#class.copy.elision-note-2)*:
There cannot be a move from the exception object because it is
always an lvalue[.](#class.copy.elision-1.4.sentence-2)
— *end note*]
Copy elision is not permitted
where an expression is evaluated in a context
requiring a constant expression ([[expr.const]](expr.const "7.7Constant expressions"))
and in constant initialization ([[basic.start.static]](basic.start.static "6.10.3.2Static initialization"))[.](#class.copy.elision-1.sentence-6)
[*Note [3](#class.copy.elision-note-3)*:
It is possible that copy elision is performed
if the same expression
is evaluated in another context[.](#class.copy.elision-1.sentence-7)
— *end note*]
[2](#class.copy.elision-2)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6436)
[*Example [1](#class.copy.elision-example-1)*: class Thing {public: Thing(); ~Thing();
Thing(const Thing&);};
Thing f() { Thing t; return t;} Thing t2 = f();
struct A {void *p; constexpr A(): p(this) {}};
constexpr A g() { A loc; return loc;}constexpr A a; // well-formed, a.p points to aconstexpr A b = g(); // error: b.p would be dangling ([[expr.const]](expr.const "7.7Constant expressions"))void h() { A c = g(); // well-formed, c.p can point to c or be dangling}
Here the criteria for elision can eliminate
the copying of the object t with automatic storage duration
into the result object for the function call f(),
which is the non-local object t2[.](#class.copy.elision-2.sentence-1)
Effectively, the construction of t can be viewed as directly initializing t2,
and that object's destruction will occur at program exit[.](#class.copy.elision-2.sentence-2)
Adding a move constructor to Thing has the same effect, but it is the
move construction from the object with automatic storage duration to t2 that is elided[.](#class.copy.elision-2.sentence-3)
— *end example*]
[3](#class.copy.elision-3)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6481)
[*Example [2](#class.copy.elision-example-2)*: class Thing {public: Thing(); ~Thing();
Thing(Thing&&);private: Thing(const Thing&);};
Thing f(bool b) { Thing t; if (b)throw t; // OK, Thing(Thing&&) used (or elided) to throw treturn t; // OK, Thing(Thing&&) used (or elided) to return t} Thing t2 = f(false); // OK, no extra copy/move performed, t2 constructed by call to fstruct Weird { Weird();
Weird(Weird&);};
Weird g(bool b) {static Weird w1;
Weird w2; if (b)return w1; // OK, uses Weird(Weird&)elsereturn w2; // error: w2 in this context is an xvalue}int& h(bool b, int i) {static int s; if (b)return s; // OKelsereturn i; // error: i is an xvalue}decltype(auto) h2(Thing t) {return t; // OK, t is an xvalue and h2's return type is Thing}decltype(auto) h3(Thing t) {return (t); // OK, (t) is an xvalue and h3's return type is Thing&&} — *end example*]
[4](#class.copy.elision-4)
[#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/classes.tex#L6534)
[*Example [3](#class.copy.elision-example-3)*: template<class T> void g(const T&);
template<class T> void f() { T x; try { T y; try { g(x); }catch (...) {if (/*...*/)throw x; // does not movethrow y; // moves} g(y); } catch(...) { g(x);
g(y); // error: y is not in scope}} — *end example*]