C++20 concepts are now snake_case.

This commit is contained in:
Anthony Calandra
2020-02-22 14:33:13 -05:00
parent 772980baa4
commit 9168f05215
2 changed files with 88 additions and 88 deletions

View File

@@ -32,74 +32,74 @@ where `constraint-expression` evaluates to a constexpr Boolean. _Constraints_ sh
```c++
// `T` is not limited by any constraints.
template <typename T>
concept AlwaysSatisfied = true;
concept always_satisfied = true;
// Limit `T` to integrals.
template <typename T>
concept Integral = std::is_integral_v<T>;
// Limit `T` to both the `Integral` constraint and signedness.
concept integral = std::is_integral_v<T>;
// Limit `T` to both the `integral` constraint and signedness.
template <typename T>
concept SignedIntegral = Integral<T> && std::is_signed_v<T>;
// Limit `T` to both the `Integral` constraint and the negation of the `SignedIntegral` constraint.
concept signed_integral = integral<T> && std::is_signed_v<T>;
// Limit `T` to both the `integral` constraint and the negation of the `signed_integral` constraint.
template <typename T>
concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;
concept unsigned_integral = integral<T> && !signed_integral<T>;
```
There are a variety of syntactic forms for enforcing concepts:
```c++
// Forms for function parameters:
// `T` is a constrained type template parameter.
template <MyConcept T>
template <my_concept T>
void f(T v);
// `T` is a constrained type template parameter.
template <typename T>
requires MyConcept<T>
requires my_concept<T>
void f(T v);
// `T` is a constrained type template parameter.
template <typename T>
void f(T v) requires MyConcept<T>;
void f(T v) requires my_concept<T>;
// `v` is a constrained deduced parameter.
void f(MyConcept auto v);
void f(my_concept auto v);
// `v` is a constrained non-type template parameter.
template <MyConcept auto v>
template <my_concept auto v>
void g();
// Forms for auto-deduced variables:
// `foo` is a constrained auto-deduced value.
MyConcept auto foo = ...;
my_concept auto foo = ...;
// Forms for lambdas:
// `T` is a constrained type template parameter.
auto f = []<MyConcept T> (T v) {
auto f = []<my_concept T> (T v) {
// ...
};
// `T` is a constrained type template parameter.
auto f = []<typename T> requires MyConcept<T> (T v) {
auto f = []<typename T> requires my_concept<T> (T v) {
// ...
};
// `T` is a constrained type template parameter.
auto f = []<typename T> (T v) requires MyConcept<T> {
auto f = []<typename T> (T v) requires my_concept<T> {
// ...
};
// `v` is a constrained deduced parameter.
auto f = [](MyConcept auto v) {
auto f = [](my_concept auto v) {
// ...
};
// `v` is a constrained non-type template parameter.
auto g = []<MyConcept auto v> () {
auto g = []<my_concept auto v> () {
// ...
};
```
The `requires` keyword is used either to start a requires clause or a requires expression:
```c++
template <typename T>
requires MyConcept<T> // `requires` clause.
requires my_concept<T> // `requires` clause.
void f(T);
template <typename T>
concept Callable = requires (T f) { f(); }; // `requires` expression.
concept callable = requires (T f) { f(); }; // `requires` expression.
template <typename T>
requires requires (T x) { x + x; } // `requires` clause and expression on same line.
@@ -113,27 +113,27 @@ Note that the parameter list in a requires expression is optional. Each requirem
```c++
template <typename T>
concept Callable = requires (T f) { f(); };
concept callable = requires (T f) { f(); };
```
* **Type requirements** - denoted by the `typename` keyword followed by a type name, asserts that the given type name is valid.
```c++
struct Foo {
struct foo {
int foo;
};
struct Bar {
struct bar {
using value = int;
value data;
};
struct Baz {
struct baz {
using value = int;
value data;
};
// Using SFINAE, enable if `T` is a `Baz`.
template <typename T, typename = std::enable_if_t<std::is_same_v<T, Baz>>>
// Using SFINAE, enable if `T` is a `baz`.
template <typename T, typename = std::enable_if_t<std::is_same_v<T, baz>>>
struct S {};
template <typename T>
@@ -150,9 +150,9 @@ concept C = requires {
template <C T>
void g(T a);
g(Foo{}); // ERROR: Fails requirement A.
g(Bar{}); // ERROR: Fails requirement B.
g(Baz{}); // PASS.
g(foo{}); // ERROR: Fails requirement A.
g(bar{}); // ERROR: Fails requirement B.
g(baz{}); // PASS.
```
* **Compound requirements** - an expression in braces followed by a trailing return type or type constraint.
@@ -160,7 +160,7 @@ g(Baz{}); // PASS.
template <typename T>
concept C = requires(T x) {
{*x} -> typename T::inner; // the type of the expression `*x` is convertible to `T::inner`
{x + 1} -> std::Same<int>; // the expression `x + 1` satisfies `std::Same<decltype((x + 1))>`
{x + 1} -> std::same_as<int>; // the expression `x + 1` satisfies `std::same_as<decltype((x + 1))>`
{x * 1} -> T; // the type of the expression `x * 1` is convertible to `T`
};
```
@@ -169,7 +169,7 @@ concept C = requires(T x) {
```c++
template <typename T>
concept C = requires(T x) {
requires std::Same<sizeof(x), size_t>;
requires std::same_as<sizeof(x), size_t>;
};
```
See also: [concepts library](#concepts-library).
@@ -341,26 +341,26 @@ std::string_view to_string(rgba_color_channel channel) {
Concepts are also provided by the standard library for building more complicated concepts. Some of these include:
**Core language concepts:**
- `Same` - specifies two types are the same.
- `DerivedFrom` - specifies that a type is derived from another type.
- `ConvertibleTo` - specifies that a type is implicitly convertible to another type.
- `Common` - specifies that two types share a common type.
- `Integral` - specifies that a type is an integral type.
- `DefaultConstructible` - specifies that an object of a type can be default-constructed.
- `same_as` - specifies two types are the same.
- `derived_from` - specifies that a type is derived from another type.
- `convertible_to` - specifies that a type is implicitly convertible to another type.
- `common_with` - specifies that two types share a common type.
- `integral` - specifies that a type is an integral type.
- `default_constructible` - specifies that an object of a type can be default-constructed.
**Comparison concepts:**
- `Boolean` - specifies that a type can be used in Boolean contexts.
- `EqualityComparable` - specifies that `operator==` is an equivalence relation.
- `boolean` - specifies that a type can be used in Boolean contexts.
- `equality_comparable` - specifies that `operator==` is an equivalence relation.
**Object concepts:**
- `Movable` - specifies that an object of a type can be moved and swapped.
- `Copyable` - specifies that an object of a type can be copied, moved, and swapped.
- `Semiregular` - specifies that an object of a type can be copied, moved, swapped, and default constructed.
- `Regular` - specifies that a type is _regular_, that is, it is both `Semiregular` and `EqualityComparable`.
- `movable` - specifies that an object of a type can be moved and swapped.
- `copyable` - specifies that an object of a type can be copied, moved, and swapped.
- `semiregular` - specifies that an object of a type can be copied, moved, swapped, and default constructed.
- `regular` - specifies that a type is _regular_, that is, it is both `semiregular` and `equality_comparable`.
**Callable concepts:**
- `Invocable` - specifies that a callable type can be invoked with a given set of argument types.
- `Predicate` - specifies that a callable type is a Boolean predicate.
- `invocable` - specifies that a callable type can be invoked with a given set of argument types.
- `predicate` - specifies that a callable type is a Boolean predicate.
See also: [concepts](#concepts).

View File

@@ -124,74 +124,74 @@ where `constraint-expression` evaluates to a constexpr Boolean. _Constraints_ sh
```c++
// `T` is not limited by any constraints.
template <typename T>
concept AlwaysSatisfied = true;
concept always_satisfied = true;
// Limit `T` to integrals.
template <typename T>
concept Integral = std::is_integral_v<T>;
// Limit `T` to both the `Integral` constraint and signedness.
concept integral = std::is_integral_v<T>;
// Limit `T` to both the `integral` constraint and signedness.
template <typename T>
concept SignedIntegral = Integral<T> && std::is_signed_v<T>;
// Limit `T` to both the `Integral` constraint and the negation of the `SignedIntegral` constraint.
concept signed_integral = integral<T> && std::is_signed_v<T>;
// Limit `T` to both the `integral` constraint and the negation of the `signed_integral` constraint.
template <typename T>
concept UnsignedIntegral = Integral<T> && !SignedIntegral<T>;
concept unsigned_integral = integral<T> && !signed_integral<T>;
```
There are a variety of syntactic forms for enforcing concepts:
```c++
// Forms for function parameters:
// `T` is a constrained type template parameter.
template <MyConcept T>
template <my_concept T>
void f(T v);
// `T` is a constrained type template parameter.
template <typename T>
requires MyConcept<T>
requires my_concept<T>
void f(T v);
// `T` is a constrained type template parameter.
template <typename T>
void f(T v) requires MyConcept<T>;
void f(T v) requires my_concept<T>;
// `v` is a constrained deduced parameter.
void f(MyConcept auto v);
void f(my_concept auto v);
// `v` is a constrained non-type template parameter.
template <MyConcept auto v>
template <my_concept auto v>
void g();
// Forms for auto-deduced variables:
// `foo` is a constrained auto-deduced value.
MyConcept auto foo = ...;
my_concept auto foo = ...;
// Forms for lambdas:
// `T` is a constrained type template parameter.
auto f = []<MyConcept T> (T v) {
auto f = []<my_concept T> (T v) {
// ...
};
// `T` is a constrained type template parameter.
auto f = []<typename T> requires MyConcept<T> (T v) {
auto f = []<typename T> requires my_concept<T> (T v) {
// ...
};
// `T` is a constrained type template parameter.
auto f = []<typename T> (T v) requires MyConcept<T> {
auto f = []<typename T> (T v) requires my_concept<T> {
// ...
};
// `v` is a constrained deduced parameter.
auto f = [](MyConcept auto v) {
auto f = [](my_concept auto v) {
// ...
};
// `v` is a constrained non-type template parameter.
auto g = []<MyConcept auto v> () {
auto g = []<my_concept auto v> () {
// ...
};
```
The `requires` keyword is used either to start a requires clause or a requires expression:
```c++
template <typename T>
requires MyConcept<T> // `requires` clause.
requires my_concept<T> // `requires` clause.
void f(T);
template <typename T>
concept Callable = requires (T f) { f(); }; // `requires` expression.
concept callable = requires (T f) { f(); }; // `requires` expression.
template <typename T>
requires requires (T x) { x + x; } // `requires` clause and expression on same line.
@@ -205,27 +205,27 @@ Note that the parameter list in a requires expression is optional. Each requirem
```c++
template <typename T>
concept Callable = requires (T f) { f(); };
concept callable = requires (T f) { f(); };
```
* **Type requirements** - denoted by the `typename` keyword followed by a type name, asserts that the given type name is valid.
```c++
struct Foo {
struct foo {
int foo;
};
struct Bar {
struct bar {
using value = int;
value data;
};
struct Baz {
struct baz {
using value = int;
value data;
};
// Using SFINAE, enable if `T` is a `Baz`.
template <typename T, typename = std::enable_if_t<std::is_same_v<T, Baz>>>
// Using SFINAE, enable if `T` is a `baz`.
template <typename T, typename = std::enable_if_t<std::is_same_v<T, baz>>>
struct S {};
template <typename T>
@@ -242,9 +242,9 @@ concept C = requires {
template <C T>
void g(T a);
g(Foo{}); // ERROR: Fails requirement A.
g(Bar{}); // ERROR: Fails requirement B.
g(Baz{}); // PASS.
g(foo{}); // ERROR: Fails requirement A.
g(bar{}); // ERROR: Fails requirement B.
g(baz{}); // PASS.
```
* **Compound requirements** - an expression in braces followed by a trailing return type or type constraint.
@@ -252,7 +252,7 @@ g(Baz{}); // PASS.
template <typename T>
concept C = requires(T x) {
{*x} -> typename T::inner; // the type of the expression `*x` is convertible to `T::inner`
{x + 1} -> std::Same<int>; // the expression `x + 1` satisfies `std::Same<decltype((x + 1))>`
{x + 1} -> std::same_as<int>; // the expression `x + 1` satisfies `std::same_as<decltype((x + 1))>`
{x * 1} -> T; // the type of the expression `x * 1` is convertible to `T`
};
```
@@ -261,7 +261,7 @@ concept C = requires(T x) {
```c++
template <typename T>
concept C = requires(T x) {
requires std::Same<sizeof(x), size_t>;
requires std::same_as<sizeof(x), size_t>;
};
```
See also: [concepts library](#concepts-library).
@@ -433,26 +433,26 @@ std::string_view to_string(rgba_color_channel channel) {
Concepts are also provided by the standard library for building more complicated concepts. Some of these include:
**Core language concepts:**
- `Same` - specifies two types are the same.
- `DerivedFrom` - specifies that a type is derived from another type.
- `ConvertibleTo` - specifies that a type is implicitly convertible to another type.
- `Common` - specifies that two types share a common type.
- `Integral` - specifies that a type is an integral type.
- `DefaultConstructible` - specifies that an object of a type can be default-constructed.
- `same_as` - specifies two types are the same.
- `derived_from` - specifies that a type is derived from another type.
- `convertible_to` - specifies that a type is implicitly convertible to another type.
- `common_with` - specifies that two types share a common type.
- `integral` - specifies that a type is an integral type.
- `default_constructible` - specifies that an object of a type can be default-constructed.
**Comparison concepts:**
- `Boolean` - specifies that a type can be used in Boolean contexts.
- `EqualityComparable` - specifies that `operator==` is an equivalence relation.
- `boolean` - specifies that a type can be used in Boolean contexts.
- `equality_comparable` - specifies that `operator==` is an equivalence relation.
**Object concepts:**
- `Movable` - specifies that an object of a type can be moved and swapped.
- `Copyable` - specifies that an object of a type can be copied, moved, and swapped.
- `Semiregular` - specifies that an object of a type can be copied, moved, swapped, and default constructed.
- `Regular` - specifies that a type is _regular_, that is, it is both `Semiregular` and `EqualityComparable`.
- `movable` - specifies that an object of a type can be moved and swapped.
- `copyable` - specifies that an object of a type can be copied, moved, and swapped.
- `semiregular` - specifies that an object of a type can be copied, moved, swapped, and default constructed.
- `regular` - specifies that a type is _regular_, that is, it is both `semiregular` and `equality_comparable`.
**Callable concepts:**
- `Invocable` - specifies that a callable type can be invoked with a given set of argument types.
- `Predicate` - specifies that a callable type is a Boolean predicate.
- `invocable` - specifies that a callable type can be invoked with a given set of argument types.
- `predicate` - specifies that a callable type is a Boolean predicate.
See also: [concepts](#concepts).