added posibility to change internal weights of the network directly

assigning the values
This commit is contained in:
rluna
2019-01-04 17:24:37 +01:00
parent aa3453baa8
commit f152b3030b
8 changed files with 149 additions and 6 deletions

1
.settings/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
/language.settings.xml

View File

@@ -14,7 +14,8 @@ AUXLIBS =
INCLUDES = -I$(LOCALDEPSINCLUDES) -I$(AUXINCLUDES)
LIBS = -L$(AUXLIBS)
#LIBS += -L/usr/local/lib/
CFLAGS = -std=gnu++11 -std=c++11 -Wall -O3 -fmessage-length=0 -fPIC $(INCLUDES)
#rlunaro: removed optimization for tests: -O3
CFLAGS = -std=gnu++11 -std=c++11 -Wall -fmessage-length=0 -fPIC $(INCLUDES)
CFLAGS += $(DEBUG)
LFLAGS = $(LIBS)
#For verbosity

5
src/.gitignore vendored Normal file
View File

@@ -0,0 +1,5 @@
/IrisDatasetTest.o
/LayerTest.o
/MLP.o
/MLPTest.o
/NodeTest.o

View File

@@ -68,6 +68,14 @@ public:
return m_nodes;
}
/**
* Return the internal list of nodes, but modifiable.
*/
std::vector<Node> & GetNodesChangeable() {
return m_nodes;
}
void GetOutputAfterActivationFunction(const std::vector<double> &input,
std::vector<double> * output) const {
assert(input.size() == m_num_inputs_per_node);
@@ -116,6 +124,22 @@ public:
};
void SetWeights( std::vector<std::vector<double>> & weights )
{
if( 0 <= weights.size() && weights.size() <= m_num_nodes )
{
// traverse the list of nodes
size_t node_i = 0;
for( Node & node : m_nodes )
{
node.SetWeights( weights[node_i] );
node_i++;
}
}
else
throw new std::logic_error("Incorrect layer number in SetWeights call");
};
void SaveLayer(FILE * file) const {
fwrite(&m_num_nodes, sizeof(m_num_nodes), 1, file);
fwrite(&m_num_inputs_per_node, sizeof(m_num_inputs_per_node), 1, file);

View File

@@ -48,7 +48,7 @@ void MLP::CreateMLP(const std::vector<uint64_t> & layers_nodes,
m_num_outputs = m_layers_nodes[m_layers_nodes.size() - 1];
m_num_hidden_layers = m_layers_nodes.size() - 2;
for (int i = 0; i < m_layers_nodes.size() - 1; i++) {
for (size_t i = 0; i < m_layers_nodes.size() - 1; i++) {
m_layers.emplace_back(Layer(m_layers_nodes[i],
m_layers_nodes[i + 1],
layers_activfuncs[i],
@@ -65,7 +65,7 @@ void MLP::SaveMLPNetwork(const std::string & filename)const {
fwrite(&m_num_hidden_layers, sizeof(m_num_hidden_layers), 1, file);
if (!m_layers_nodes.empty())
fwrite(&m_layers_nodes[0], sizeof(m_layers_nodes[0]), m_layers_nodes.size(), file);
for (int i = 0; i < m_layers.size(); i++) {
for (size_t i = 0; i < m_layers.size(); i++) {
m_layers[i].SaveLayer(file);
}
fclose(file);
@@ -83,7 +83,7 @@ void MLP::LoadMLPNetwork(const std::string & filename) {
if (!m_layers_nodes.empty())
fread(&m_layers_nodes[0], sizeof(m_layers_nodes[0]), m_layers_nodes.size(), file);
m_layers.resize(m_layers_nodes.size() - 1);
for (int i = 0; i < m_layers.size(); i++) {
for (size_t i = 0; i < m_layers.size(); i++) {
m_layers[i].LoadLayer(file);
}
fclose(file);
@@ -103,7 +103,7 @@ void MLP::GetOutput(const std::vector<double> &input,
std::vector<double> temp_out(temp_size, 0.0);
temp_in = input;
for (int i = 0; i < m_layers.size(); ++i) {
for (size_t i = 0; i < m_layers.size(); ++i) {
if (i > 0) {
//Store this layer activation
if (all_layers_activations != nullptr)
@@ -260,3 +260,38 @@ void MLP::Train(const std::vector<TrainingSample> &training_sample_set_with_bias
};
size_t MLP::GetNumLayers()
{
return m_layers.size();
}
std::vector<std::vector<double>> MLP::GetLayerWeights( size_t layer_i )
{
std::vector<std::vector<double>> ret_val;
// check parameters
if( 0 <= layer_i && layer_i < m_layers.size() )
{
Layer current_layer = m_layers[layer_i];
for( Node & node : current_layer.GetNodesChangeable() )
{
ret_val.push_back( node.GetWeights() );
}
return ret_val;
}
else
throw new std::logic_error("Incorrect layer number in GetLayerWeights call");
}
void MLP::SetLayerWeights( size_t layer_i, std::vector<std::vector<double>> & weights )
{
// check parameters
if( 0 <= layer_i && layer_i < m_layers.size() )
{
m_layers[layer_i].SetWeights( weights );
}
else
throw new std::logic_error("Incorrect layer number in SetLayerWeights call");
}

View File

@@ -16,6 +16,7 @@
#include <fstream>
#include <vector>
#include <algorithm>
#include <exception>
class MLP {
public:
@@ -40,6 +41,9 @@ public:
int max_iterations = 5000,
double min_error_cost = 0.001,
bool output_log = true);
size_t GetNumLayers();
std::vector<std::vector<double>> GetLayerWeights( size_t layer_i );
void SetLayerWeights( size_t layer_i, std::vector<std::vector<double>> & weights );
protected:
void UpdateWeights(const std::vector<std::vector<double>> & all_layers_activations,

View File

@@ -317,6 +317,70 @@ UNIT(LearnX2) {
LOG(INFO) << "Trained with success." << std::endl;
}
UNIT(GetWeightsSetWeights) {
LOG(INFO) << "Train X2 function, read internal weights" << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 0.0 } },
{ { 0, 1 },{ 1.0 } },
{ { 1, 0 },{ 0.0 } },
{ { 1, 1 },{ 1.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp({ num_features, 2, num_outputs }, { "sigmoid", "linear" });
//Train MLP
my_mlp.Train(training_sample_set_with_bias, 0.5, 500, 0.25);
// get layer weights
std::vector<std::vector<double>> weights = my_mlp.GetLayerWeights( 1 );
// the expected value of the internal weights
// after training are 1.65693 -0.538749
ASSERT_TRUE( 1.6 <= weights[0][0] && weights[0][0] <= 1.7 );
ASSERT_TRUE( -0.6 <= weights[0][1] && weights[0][1] <= -0.5 );
// now, we are going to inject a weight value of 0.0
// and check that the new output value is nonsense
std::vector<std::vector<double>> zeroWeights = { { 0.0, 0.0 } };
my_mlp.SetLayerWeights( 1, zeroWeights );
/*
*
* PREDICTED OUTPUT IS NOW: 0.335394
PREDICTED OUTPUT IS NOW: 1.13887
PREDICTED OUTPUT IS NOW: 0.180468
PREDICTED OUTPUT IS NOW: 1.00535
*
*/
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
for (size_t i = 0; i < num_outputs; i++) {
bool predicted_output = output[i] > 0.5 ? true : false;
std::cout << "PREDICTED OUTPUT IS NOW: " << output[i] << std::endl;
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
}
LOG(INFO) << "Trained with success." << std::endl;
}
int main(int argc, char* argv[]) {
START_EASYLOGGINGPP(argc, argv);
microunit::UnitTester::Run();

View File

@@ -15,6 +15,7 @@
#include <vector>
#include <algorithm>
#include <cassert> // for assert()
#include <exception>
#define CONSTANT_WEIGHT_INITIALIZATION 0
@@ -81,6 +82,14 @@ public:
return m_weights;
}
void SetWeights( std::vector<double> & weights ){
// check size of the weights vector
if( weights.size() == m_num_inputs )
m_weights = weights;
else
throw new std::logic_error("Incorrect weight size in SetWeights call");
}
size_t GetWeightsVectorSize() const {
return m_weights.size();
}
@@ -146,4 +155,4 @@ protected:
std::vector<double> m_weights;
};
#endif //NODE_H
#endif //NODE_H