mirror of
https://github.com/davidalbertonogueira/MLP.git
synced 2025-12-16 20:07:07 +03:00
More test changes.
This commit is contained in:
@@ -43,9 +43,11 @@ UNIT(LearnAND) {
|
||||
for (const auto & training_sample : training_sample_set_with_bias) {
|
||||
std::vector<double> output;
|
||||
my_mlp.GetOutput(training_sample.input_vector(), &output);
|
||||
bool predicted_output = output[0] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
for (int i = 0; i < num_outputs; i++) {
|
||||
bool predicted_output = output[i] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
}
|
||||
}
|
||||
std::cout << "Trained with success." << std::endl;
|
||||
std::cout << std::endl;
|
||||
@@ -82,9 +84,11 @@ UNIT(LearnNAND) {
|
||||
for (const auto & training_sample : training_sample_set_with_bias) {
|
||||
std::vector<double> output;
|
||||
my_mlp.GetOutput(training_sample.input_vector(), &output);
|
||||
bool predicted_output = output[0] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
for (int i = 0; i < num_outputs; i++) {
|
||||
bool predicted_output = output[i] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
}
|
||||
}
|
||||
std::cout << "Trained with success." << std::endl;
|
||||
std::cout << std::endl;
|
||||
@@ -121,9 +125,11 @@ UNIT(LearnOR) {
|
||||
for (const auto & training_sample : training_sample_set_with_bias) {
|
||||
std::vector<double> output;
|
||||
my_mlp.GetOutput(training_sample.input_vector(), &output);
|
||||
bool predicted_output = output[0] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
for (int i = 0; i < num_outputs; i++) {
|
||||
bool predicted_output = output[i] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
}
|
||||
}
|
||||
std::cout << "Trained with success." << std::endl;
|
||||
std::cout << std::endl;
|
||||
@@ -160,9 +166,11 @@ UNIT(LearnNOR) {
|
||||
for (const auto & training_sample : training_sample_set_with_bias) {
|
||||
std::vector<double> output;
|
||||
my_mlp.GetOutput(training_sample.input_vector(), &output);
|
||||
bool predicted_output = output[0] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
for (int i = 0; i < num_outputs; i++) {
|
||||
bool predicted_output = output[i] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
}
|
||||
}
|
||||
std::cout << "Trained with success." << std::endl;
|
||||
std::cout << std::endl;
|
||||
@@ -197,9 +205,11 @@ UNIT(LearnXOR) {
|
||||
for (const auto & training_sample : training_sample_set_with_bias) {
|
||||
std::vector<double> output;
|
||||
my_mlp.GetOutput(training_sample.input_vector(), &output);
|
||||
bool predicted_output = output[0] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
for (int i = 0; i < num_outputs; i++) {
|
||||
bool predicted_output = output[i] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
}
|
||||
}
|
||||
std::cout << "Trained with success." << std::endl;
|
||||
std::cout << std::endl;
|
||||
@@ -232,9 +242,11 @@ UNIT(LearnNOT) {
|
||||
for (const auto & training_sample : training_sample_set_with_bias) {
|
||||
std::vector<double> output;
|
||||
my_mlp.GetOutput(training_sample.input_vector(), &output);
|
||||
bool predicted_output = output[0] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
for (int i = 0; i < num_outputs; i++) {
|
||||
bool predicted_output = output[i] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
}
|
||||
}
|
||||
std::cout << "Trained with success." << std::endl;
|
||||
std::cout << std::endl;
|
||||
@@ -269,15 +281,16 @@ UNIT(LearnX1) {
|
||||
for (const auto & training_sample : training_sample_set_with_bias) {
|
||||
std::vector<double> output;
|
||||
my_mlp.GetOutput(training_sample.input_vector(), &output);
|
||||
bool predicted_output = output[0] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
for (int i = 0; i < num_outputs; i++) {
|
||||
bool predicted_output = output[i] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
}
|
||||
}
|
||||
std::cout << "Trained with success." << std::endl;
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
UNIT(LearnX2) {
|
||||
std::cout << "Train X2 function with mlp." << std::endl;
|
||||
|
||||
@@ -307,9 +320,11 @@ UNIT(LearnX2) {
|
||||
for (const auto & training_sample : training_sample_set_with_bias) {
|
||||
std::vector<double> output;
|
||||
my_mlp.GetOutput(training_sample.input_vector(), &output);
|
||||
bool predicted_output = output[0] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
for (int i = 0; i < num_outputs; i++) {
|
||||
bool predicted_output = output[i] > 0.5 ? true : false;
|
||||
bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false;
|
||||
ASSERT_TRUE(predicted_output == correct_output);
|
||||
}
|
||||
}
|
||||
std::cout << "Trained with success." << std::endl;
|
||||
std::cout << std::endl;
|
||||
|
||||
Reference in New Issue
Block a user