[unord] # 23 Containers library [[containers]](./#containers) ## 23.5 Unordered associative containers [unord] ### [23.5.1](#general) General [[unord.general]](unord.general) [1](#general-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13314) The header [](#header:%3cunordered_map%3e "23.5.2 Header synopsis [unord.map.syn]") defines the class templates unordered_map and unordered_multimap; the header [](#header:%3cunordered_set%3e "23.5.5 Header synopsis [unord.set.syn]") defines the class templates unordered_set and unordered_multiset[.](#general-1.sentence-1) [2](#general-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13320) The exposition-only alias templates*iter-value-type*, *iter-key-type*,*iter-mapped-type*, *iter-to-alloc-type*,*range-key-type*, *range-mapped-type*, and *range-to-alloc-type* defined in [[associative.general]](associative.general "23.4.1 General") may appear in deduction guides for unordered containers[.](#general-2.sentence-1) ### [23.5.2](#map.syn) Header synopsis [[unord.map.syn]](unord.map.syn) [🔗](#header:%3cunordered_map%3e) #include // see [[compare.syn]](compare.syn "17.12.1 Header synopsis")#include // see [[initializer.list.syn]](initializer.list.syn "17.11.2 Header synopsis")namespace std {// [[unord.map]](#map "23.5.3 Class template unordered_­map"), class template unordered_maptemplate, class Pred = equal_to, class Alloc = allocator>>class unordered_map; // [[unord.multimap]](#multimap "23.5.4 Class template unordered_­multimap"), class template unordered_multimaptemplate, class Pred = equal_to, class Alloc = allocator>>class unordered_multimap; templateconstexpr bool operator==(const unordered_map& a, const unordered_map& b); templateconstexpr bool operator==(const unordered_multimap& a, const unordered_multimap& b); templateconstexpr void swap(unordered_map& x, unordered_map& y)noexcept(noexcept(x.swap(y))); templateconstexpr void swap(unordered_multimap& x, unordered_multimap& y)noexcept(noexcept(x.swap(y))); // [[unord.map.erasure]](#map.erasure "23.5.3.5 Erasure"), erasure for unordered_maptemplateconstexpr typename unordered_map::size_type erase_if(unordered_map& c, Predicate pred); // [[unord.multimap.erasure]](#multimap.erasure "23.5.4.4 Erasure"), erasure for unordered_multimaptemplateconstexpr typename unordered_multimap::size_type erase_if(unordered_multimap& c, Predicate pred); namespace pmr {template, class Pred = equal_to>using unordered_map = std::unordered_map>>; template, class Pred = equal_to>using unordered_multimap = std::unordered_multimap>>; }} ### [23.5.3](#map) Class template unordered_map [[unord.map]](unord.map) #### [23.5.3.1](#map.overview) Overview [[unord.map.overview]](unord.map.overview) [1](#map.overview-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13407) An unordered_map is an unordered associative container that supports unique keys (an unordered_map contains at most one of each key value) and that associates values of another typemapped_type with the keys[.](#map.overview-1.sentence-1) The unordered_map class supports forward iterators[.](#map.overview-1.sentence-2) [2](#map.overview-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13417) An unordered_map meets all of the requirements of a container ([[container.reqmts]](container.reqmts "23.2.2.2 Container requirements")), of an allocator-aware container ([[container.alloc.reqmts]](container.alloc.reqmts "23.2.2.5 Allocator-aware containers")), and of an unordered associative container ([[unord.req]](unord.req "23.2.8 Unordered associative containers"))[.](#map.overview-2.sentence-1) It provides the operations described in the preceding requirements table for unique keys; that is, an unordered_map supports the a_uniq operations in that table, not the a_eq operations[.](#map.overview-2.sentence-2) For an unordered_map the key_type is Key, the mapped_type is T, and the value_type is pair[.](#map.overview-2.sentence-3) [3](#map.overview-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13429) Subclause [[unord.map]](#map "23.5.3 Class template unordered_­map") only describes operations on unordered_map that are not described in one of the requirement tables, or for which there is additional semantic information[.](#map.overview-3.sentence-1) [4](#map.overview-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13434) The types iterator and const_iterator meet the constexpr iterator requirements ([[iterator.requirements.general]](iterator.requirements.general "24.3.1 General"))[.](#map.overview-4.sentence-1) [🔗](#lib:unordered_map__) namespace std {template, class Pred = equal_to, class Allocator = allocator>>class unordered_map {public:// typesusing key_type = Key; using mapped_type = T; using value_type = pair; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = typename allocator_traits::pointer; using const_pointer = typename allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using difference_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using node_type = *unspecified*; using insert_return_type = *insert-return-type*; // [[unord.map.cnstr]](#map.cnstr "23.5.3.2 Constructors"), construct/copy/destroyconstexpr unordered_map(); constexpr explicit unordered_map(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); templateconstexpr unordered_map(InputIterator f, InputIterator l, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_map(from_range_t, R&& rg, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_map(const unordered_map&); constexpr unordered_map(unordered_map&&); constexpr explicit unordered_map(const Allocator&); constexpr unordered_map(const unordered_map&, const type_identity_t&); constexpr unordered_map(unordered_map&&, const type_identity_t&); constexpr unordered_map(initializer_list il, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_map(size_type n, const allocator_type& a): unordered_map(n, hasher(), key_equal(), a) { }constexpr unordered_map(size_type n, const hasher& hf, const allocator_type& a): unordered_map(n, hf, key_equal(), a) { }templateconstexpr unordered_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a): unordered_map(f, l, n, hasher(), key_equal(), a) { }templateconstexpr unordered_map(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a): unordered_map(f, l, n, hf, key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_map(from_range_t, R&& rg, size_type n, const allocator_type& a): unordered_map(from_range, std::forward(rg), n, hasher(), key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_map(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a): unordered_map(from_range, std::forward(rg), n, hf, key_equal(), a) { }constexpr unordered_map(initializer_list il, size_type n, const allocator_type& a): unordered_map(il, n, hasher(), key_equal(), a) { }constexpr unordered_map(initializer_list il, size_type n, const hasher& hf, const allocator_type& a): unordered_map(il, n, hf, key_equal(), a) { }constexpr ~unordered_map(); constexpr unordered_map& operator=(const unordered_map&); constexpr unordered_map& operator=(unordered_map&&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_map& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iteratorsconstexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacityconstexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // [[unord.map.modifiers]](#map.modifiers "23.5.3.4 Modifiers"), modifierstemplate constexpr pair emplace(Args&&... args); templateconstexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair insert(const value_type& obj); constexpr pair insert(value_type&& obj); template constexpr pair insert(P&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr iterator insert(const_iterator hint, P&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr insert_return_type insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); templateconstexpr pair try_emplace(const key_type& k, Args&&... args); templateconstexpr pair try_emplace(key_type&& k, Args&&... args); templateconstexpr pair try_emplace(K&& k, Args&&... args); templateconstexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); templateconstexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); templateconstexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); templateconstexpr pair insert_or_assign(const key_type& k, M&& obj); templateconstexpr pair insert_or_assign(key_type&& k, M&& obj); templateconstexpr pair insert_or_assign(K&& k, M&& obj); templateconstexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); templateconstexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); templateconstexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_map&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; templateconstexpr void merge(unordered_map& source); templateconstexpr void merge(unordered_map&& source); templateconstexpr void merge(unordered_multimap& source); templateconstexpr void merge(unordered_multimap&& source); // observersconstexpr hasher hash_function() const; constexpr key_equal key_eq() const; // map operationsconstexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; templateconstexpr iterator find(const K& k); templateconstexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; templateconstexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; templateconstexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; templateconstexpr pair equal_range(const K& k); templateconstexpr pair equal_range(const K& k) const; // [[unord.map.elem]](#map.elem "23.5.3.3 Element access"), element accessconstexpr mapped_type& operator[](const key_type& k); constexpr mapped_type& operator[](key_type&& k); template constexpr mapped_type& operator[](K&& k); constexpr mapped_type& at(const key_type& k); constexpr const mapped_type& at(const key_type& k) const; template constexpr mapped_type& at(const K& k); template constexpr const mapped_type& at(const K& k) const; // bucket interfaceconstexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policyconstexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<*iter-key-type*>, class Allocator = allocator<*iter-to-alloc-type*>> unordered_map(InputIterator, InputIterator, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_map<*iter-key-type*, *iter-mapped-type*, Hash, Pred, Allocator>; template>, class Pred = equal_to<*range-key-type*>, class Allocator = allocator<*range-to-alloc-type*>> unordered_map(from_range_t, R&&, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_map<*range-key-type*, *range-mapped-type*, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator>> unordered_map(initializer_list>, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_map; template unordered_map(InputIterator, InputIterator, typename *see below*::size_type, Allocator)-> unordered_map<*iter-key-type*, *iter-mapped-type*, hash<*iter-key-type*>, equal_to<*iter-key-type*>, Allocator>; template unordered_map(InputIterator, InputIterator, Allocator)-> unordered_map<*iter-key-type*, *iter-mapped-type*, hash<*iter-key-type*>, equal_to<*iter-key-type*>, Allocator>; template unordered_map(InputIterator, InputIterator, typename *see below*::size_type, Hash, Allocator)-> unordered_map<*iter-key-type*, *iter-mapped-type*, Hash, equal_to<*iter-key-type*>, Allocator>; template unordered_map(from_range_t, R&&, typename *see below*::size_type, Allocator)-> unordered_map<*range-key-type*, *range-mapped-type*, hash<*range-key-type*>, equal_to<*range-key-type*>, Allocator>; template unordered_map(from_range_t, R&&, Allocator)-> unordered_map<*range-key-type*, *range-mapped-type*, hash<*range-key-type*>, equal_to<*range-key-type*>, Allocator>; template unordered_map(from_range_t, R&&, typename *see below*::size_type, Hash, Allocator)-> unordered_map<*range-key-type*, *range-mapped-type*, Hash, equal_to<*range-key-type*>, Allocator>; template unordered_map(initializer_list>, typename *see below*::size_type, Allocator)-> unordered_map, equal_to, Allocator>; template unordered_map(initializer_list>, Allocator)-> unordered_map, equal_to, Allocator>; template unordered_map(initializer_list>, typename *see below*::size_type, Hash, Allocator)-> unordered_map, Allocator>;} [5](#map.overview-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13730) A size_type parameter type in an unordered_map deduction guide refers to the size_type member type of the type deduced by the deduction guide[.](#map.overview-5.sentence-1) #### [23.5.3.2](#map.cnstr) Constructors [[unord.map.cnstr]](unord.map.cnstr) [🔗](#lib:unordered_map,constructor) `constexpr unordered_map() : unordered_map(size_type(see below)) { } constexpr explicit unordered_map(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [1](#map.cnstr-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13745) *Effects*: Constructs an empty unordered_map using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#map.cnstr-1.sentence-1) For the default constructor, the number of buckets is implementation-defined[.](#map.cnstr-1.sentence-2) max_load_factor() returns 1.0[.](#map.cnstr-1.sentence-3) [2](#map.cnstr-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13754) *Complexity*: Constant[.](#map.cnstr-2.sentence-1) [🔗](#lib:unordered_map,constructor_) `template constexpr unordered_map(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[container-compatible-range](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R> constexpr unordered_map(from_range_t, R&& rg, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_map(initializer_list il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [3](#map.cnstr-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13778) *Effects*: Constructs an empty unordered_map using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#map.cnstr-3.sentence-1) If n is not provided, the number of buckets is implementation-defined[.](#map.cnstr-3.sentence-2) Then inserts elements from the range [f, l), rg, or il, respectively[.](#map.cnstr-3.sentence-3) max_load_factor() returns 1.0[.](#map.cnstr-3.sentence-4) [4](#map.cnstr-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13789) *Complexity*: Average case linear, worst case quadratic[.](#map.cnstr-4.sentence-1) #### [23.5.3.3](#map.elem) Element access [[unord.map.elem]](unord.map.elem) [🔗](#lib:unordered_map,operator%5b%5d) `constexpr mapped_type& operator[](const key_type& k); ` [1](#map.elem-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13803) *Effects*: Equivalent to: return try_emplace(k).first->second; [🔗](#lib:unordered_map,operator%5b%5d_) `constexpr mapped_type& operator[](key_type&& k); ` [2](#map.elem-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13815) *Effects*: Equivalent to: return try_emplace(std​::​move(k)).first->second; [🔗](#lib:unordered_map,operator%5b%5d__) `template constexpr mapped_type& operator[](K&& k); ` [3](#map.elem-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13827) *Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3 Qualified names [expr.prim.id.qual]")*s* Hash​::​is_transparent andPred​::​is_transparent are valid and denote types[.](#map.elem-3.sentence-1) [4](#map.elem-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13832) *Effects*: Equivalent to: return try_emplace(std​::​forward(k)).first->second; [🔗](#lib:unordered_map,at) `constexpr mapped_type& at(const key_type& k); constexpr const mapped_type& at(const key_type& k) const; ` [5](#map.elem-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13845) *Returns*: A reference to x.second, where x is the (unique) element whose key is equivalent to k[.](#map.elem-5.sentence-1) [6](#map.elem-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13849) *Throws*: An exception object of type out_of_range if no such element is present[.](#map.elem-6.sentence-1) [🔗](#lib:unordered_map,at_) `template constexpr mapped_type& at(const K& k); template constexpr const mapped_type& at(const K& k) const; ` [7](#map.elem-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13862) *Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3 Qualified names [expr.prim.id.qual]")*s* Hash​::​is_transparent andPred​::​is_transparent are valid and denote types[.](#map.elem-7.sentence-1) [8](#map.elem-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13867) *Preconditions*: The expression find(k) is well-formed and has well-defined behavior[.](#map.elem-8.sentence-1) [9](#map.elem-9) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13871) *Returns*: A reference to find(k)->second[.](#map.elem-9.sentence-1) [10](#map.elem-10) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13875) *Throws*: An exception object of type out_of_range if find(k) == end() is true[.](#map.elem-10.sentence-1) #### [23.5.3.4](#map.modifiers) Modifiers [[unord.map.modifiers]](unord.map.modifiers) [🔗](#lib:unordered_map,insert) `template constexpr pair insert(P&& obj); ` [1](#map.modifiers-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13891) *Constraints*: is_constructible_v is true[.](#map.modifiers-1.sentence-1) [2](#map.modifiers-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13895) *Effects*: Equivalent to: return emplace(std​::​forward

(obj)); [🔗](#lib:unordered_map,insert_) `template constexpr iterator insert(const_iterator hint, P&& obj); ` [3](#map.modifiers-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13907) *Constraints*: is_constructible_v is true[.](#map.modifiers-3.sentence-1) [4](#map.modifiers-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13911) *Effects*: Equivalent to:return emplace_hint(hint, std​::​forward

(obj)); [🔗](#lib:try_emplace,unordered_map) `template constexpr pair try_emplace(const key_type& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args); ` [5](#map.modifiers-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13926) *Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from piecewise_construct, forward_as_tuple(k),forward_as_tuple(std​::​forward(args)...)[.](#map.modifiers-5.sentence-1) [6](#map.modifiers-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13932) *Effects*: If the map already contains an element whose key is equivalent to k, there is no effect[.](#map.modifiers-6.sentence-1) Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(k),forward_as_tuple(std​::​forward(args)...)[.](#map.modifiers-6.sentence-2) [7](#map.modifiers-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13941) *Returns*: In the first overload, the bool component of the returned pair is true if and only if the insertion took place[.](#map.modifiers-7.sentence-1) The returned iterator points to the map element whose key is equivalent to k[.](#map.modifiers-7.sentence-2) [8](#map.modifiers-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13949) *Complexity*: The same as emplace and emplace_hint, respectively[.](#map.modifiers-8.sentence-1) [🔗](#lib:try_emplace,unordered_map_) `template constexpr pair try_emplace(key_type&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args); ` [9](#map.modifiers-9) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13964) *Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from piecewise_construct, forward_as_tuple(std​::​move(k)),forward_as_tuple(std​::​forward(args)...)[.](#map.modifiers-9.sentence-1) [10](#map.modifiers-10) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13970) *Effects*: If the map already contains an element whose key is equivalent to k, there is no effect[.](#map.modifiers-10.sentence-1) Otherwise inserts an object of type value_type constructed with piecewise_construct, forward_as_tuple(std​::​move(k)),forward_as_tuple(std​::​forward(args)...)[.](#map.modifiers-10.sentence-2) [11](#map.modifiers-11) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13979) *Returns*: In the first overload, the bool component of the returned pair is true if and only if the insertion took place[.](#map.modifiers-11.sentence-1) The returned iterator points to the map element whose key is equivalent to k[.](#map.modifiers-11.sentence-2) [12](#map.modifiers-12) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L13987) *Complexity*: The same as emplace and emplace_hint, respectively[.](#map.modifiers-12.sentence-1) [🔗](#lib:try_emplace,unordered_map__) `template constexpr pair try_emplace(K&& k, Args&&... args); template constexpr iterator try_emplace(const_iterator hint, K&& k, Args&&... args); ` [13](#map.modifiers-13) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14002) *Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3 Qualified names [expr.prim.id.qual]")*s* Hash​::​is_transparent andPred​::​is_transparent are valid and denote types[.](#map.modifiers-13.sentence-1) For the first overload,is_convertible_v andis_convertible_v are both false[.](#map.modifiers-13.sentence-2) [14](#map.modifiers-14) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14010) *Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map frompiecewise_construct, forward_as_tuple(std​::​forward(k)), forward_as_tuple(std​::​forward (args)...)[.](#map.modifiers-14.sentence-1) [15](#map.modifiers-15) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14017) *Effects*: If the map already contains an element whose key is equivalent to k, there is no effect[.](#map.modifiers-15.sentence-1) Otherwise, let h be hash_function()(k)[.](#map.modifiers-15.sentence-2) Constructs an object u of type value_type with piecewise_construct, forward_as_tuple(std​::​forward(k)), forward_as_tuple(std​::​forward(args)...)[.](#map.modifiers-15.sentence-3) If hash_function()(u.first) != h || contains(u.first) is true, the behavior is undefined[.](#map.modifiers-15.sentence-4) Inserts u into *this[.](#map.modifiers-15.sentence-5) [16](#map.modifiers-16) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14029) *Returns*: For the first overload, the bool component of the returned pair is true if and only if the insertion took place[.](#map.modifiers-16.sentence-1) The returned iterator points to the map element whose key is equivalent to k[.](#map.modifiers-16.sentence-2) [17](#map.modifiers-17) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14037) *Complexity*: The same as emplace and emplace_hint, respectively[.](#map.modifiers-17.sentence-1) [🔗](#lib:insert_or_assign,unordered_map) `template constexpr pair insert_or_assign(const key_type& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj); ` [18](#map.modifiers-18) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14051) *Mandates*: is_assignable_v is true[.](#map.modifiers-18.sentence-1) [19](#map.modifiers-19) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14055) *Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from k, std​::​forward(obj)[.](#map.modifiers-19.sentence-1) [20](#map.modifiers-20) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14060) *Effects*: If the map already contains an element e whose key is equivalent to k, assigns std​::​forward(obj) to e.second[.](#map.modifiers-20.sentence-1) Otherwise inserts an object of type value_type constructed with k, std​::​forward(obj)[.](#map.modifiers-20.sentence-2) [21](#map.modifiers-21) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14068) *Returns*: In the first overload, the bool component of the returned pair is true if and only if the insertion took place[.](#map.modifiers-21.sentence-1) The returned iterator points to the map element whose key is equivalent to k[.](#map.modifiers-21.sentence-2) [22](#map.modifiers-22) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14076) *Complexity*: The same as emplace and emplace_hint, respectively[.](#map.modifiers-22.sentence-1) [🔗](#lib:insert_or_assign,unordered_map_) `template constexpr pair insert_or_assign(key_type&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj); ` [23](#map.modifiers-23) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14091) *Mandates*: is_assignable_v is true[.](#map.modifiers-23.sentence-1) [24](#map.modifiers-24) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14095) *Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from std​::​move(k), std​::​​forward(obj)[.](#map.modifiers-24.sentence-1) [25](#map.modifiers-25) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14100) *Effects*: If the map already contains an element e whose key is equivalent to k, assigns std​::​forward(obj) to e.second[.](#map.modifiers-25.sentence-1) Otherwise inserts an object of type value_type constructed with std​::​​move(k), std​::​forward(obj)[.](#map.modifiers-25.sentence-2) [26](#map.modifiers-26) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14108) *Returns*: In the first overload, the bool component of the returned pair is true if and only if the insertion took place[.](#map.modifiers-26.sentence-1) The returned iterator points to the map element whose key is equivalent to k[.](#map.modifiers-26.sentence-2) [27](#map.modifiers-27) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14116) *Complexity*: The same as emplace and emplace_hint, respectively[.](#map.modifiers-27.sentence-1) [🔗](#lib:insert_or_assign,unordered_map__) `template constexpr pair insert_or_assign(K&& k, M&& obj); template constexpr iterator insert_or_assign(const_iterator hint, K&& k, M&& obj); ` [28](#map.modifiers-28) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14131) *Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3 Qualified names [expr.prim.id.qual]")*s* Hash​::​is_transparent andPred​::​is_transparent are valid and denote types[.](#map.modifiers-28.sentence-1) [29](#map.modifiers-29) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14136) *Mandates*: is_assignable_v is true[.](#map.modifiers-29.sentence-1) [30](#map.modifiers-30) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14140) *Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_map from std​::​forward (k), std​::​forward(obj)[.](#map.modifiers-30.sentence-1) [31](#map.modifiers-31) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14146) *Effects*: If the map already contains an element e whose key is equivalent to k, assigns std​::​forward (obj) to e.second[.](#map.modifiers-31.sentence-1) Otherwise, let h be hash_function()(k)[.](#map.modifiers-31.sentence-2) Constructs an object u of type value_type with std​::​forward(k), std​::​forward(obj)[.](#map.modifiers-31.sentence-3) If hash_function()(u.first) != h || contains(u.first) is true, the behavior is undefined[.](#map.modifiers-31.sentence-4) Inserts u into *this[.](#map.modifiers-31.sentence-5) [32](#map.modifiers-32) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14158) *Returns*: For the first overload, the bool component of the returned pair is true if and only if the insertion took place[.](#map.modifiers-32.sentence-1) The returned iterator points to the map element whose key is equivalent to k[.](#map.modifiers-32.sentence-2) [33](#map.modifiers-33) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14166) *Complexity*: The same as emplace and emplace_hint, respectively[.](#map.modifiers-33.sentence-1) #### [23.5.3.5](#map.erasure) Erasure [[unord.map.erasure]](unord.map.erasure) [🔗](#lib:erase_if,unordered_map) `template constexpr typename unordered_map::size_type erase_if(unordered_map& c, Predicate pred); ` [1](#map.erasure-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14181) *Effects*: Equivalent to:auto original_size = c.size();for (auto i = c.begin(), last = c.end(); i != last; ) {if (pred(*i)) { i = c.erase(i); } else {++i; }}return original_size - c.size(); ### [23.5.4](#multimap) Class template unordered_multimap [[unord.multimap]](unord.multimap) #### [23.5.4.1](#multimap.overview) Overview [[unord.multimap.overview]](unord.multimap.overview) [1](#multimap.overview-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14202) An unordered_multimap is an unordered associative container that supports equivalent keys (an instance of unordered_multimap may contain multiple copies of each key value) and that associates values of another type mapped_type with the keys[.](#multimap.overview-1.sentence-1) The unordered_multimap class supports forward iterators[.](#multimap.overview-1.sentence-2) [2](#multimap.overview-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14212) An unordered_multimap meets all of the requirements of a container ([[container.reqmts]](container.reqmts "23.2.2.2 Container requirements")), of an allocator-aware container ([[container.alloc.reqmts]](container.alloc.reqmts "23.2.2.5 Allocator-aware containers")), and of an unordered associative container ([[unord.req]](unord.req "23.2.8 Unordered associative containers"))[.](#multimap.overview-2.sentence-1) It provides the operations described in the preceding requirements table for equivalent keys; that is, an unordered_multimap supports the a_eq operations in that table, not the a_uniq operations[.](#multimap.overview-2.sentence-2) For an unordered_multimap the key_type is Key, the mapped_type is T, and the value_type is pair[.](#multimap.overview-2.sentence-3) [3](#multimap.overview-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14224) Subclause [[unord.multimap]](#multimap "23.5.4 Class template unordered_­multimap") only describes operations on unordered_multimap that are not described in one of the requirement tables, or for which there is additional semantic information[.](#multimap.overview-3.sentence-1) [4](#multimap.overview-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14229) The types iterator and const_iterator meet the constexpr iterator requirements ([[iterator.requirements.general]](iterator.requirements.general "24.3.1 General"))[.](#multimap.overview-4.sentence-1) [🔗](#lib:unordered_multimap__) namespace std {template, class Pred = equal_to, class Allocator = allocator>>class unordered_multimap {public:// typesusing key_type = Key; using mapped_type = T; using value_type = pair; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = typename allocator_traits::pointer; using const_pointer = typename allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using difference_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using node_type = *unspecified*; // [[unord.multimap.cnstr]](#multimap.cnstr "23.5.4.2 Constructors"), construct/copy/destroyconstexpr unordered_multimap(); constexpr explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); templateconstexpr unordered_multimap(InputIterator f, InputIterator l, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multimap(from_range_t, R&& rg, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(const unordered_multimap&); constexpr unordered_multimap(unordered_multimap&&); constexpr explicit unordered_multimap(const Allocator&); constexpr unordered_multimap(const unordered_multimap&, const type_identity_t&); constexpr unordered_multimap(unordered_multimap&&, const type_identity_t&); constexpr unordered_multimap(initializer_list il, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(size_type n, const allocator_type& a): unordered_multimap(n, hasher(), key_equal(), a) { }constexpr unordered_multimap(size_type n, const hasher& hf, const allocator_type& a): unordered_multimap(n, hf, key_equal(), a) { }templateconstexpr unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a): unordered_multimap(f, l, n, hasher(), key_equal(), a) { }templateconstexpr unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a): unordered_multimap(f, l, n, hf, key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multimap(from_range_t, R&& rg, size_type n, const allocator_type& a): unordered_multimap(from_range, std::forward(rg), n, hasher(), key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multimap(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a): unordered_multimap(from_range, std::forward(rg), n, hf, key_equal(), a) { }constexpr unordered_multimap(initializer_list il, size_type n, const allocator_type& a): unordered_multimap(il, n, hasher(), key_equal(), a) { }constexpr unordered_multimap(initializer_list il, size_type n, const hasher& hf, const allocator_type& a): unordered_multimap(il, n, hf, key_equal(), a) { }constexpr ~unordered_multimap(); constexpr unordered_multimap& operator=(const unordered_multimap&); constexpr unordered_multimap& operator=(unordered_multimap&&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_multimap& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iteratorsconstexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacityconstexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // [[unord.multimap.modifiers]](#multimap.modifiers "23.5.4.3 Modifiers"), modifierstemplate constexpr iterator emplace(Args&&... args); templateconstexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& obj); constexpr iterator insert(value_type&& obj); template constexpr iterator insert(P&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr iterator insert(const_iterator hint, P&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr iterator insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_multimap&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; templateconstexpr void merge(unordered_multimap& source); templateconstexpr void merge(unordered_multimap&& source); templateconstexpr void merge(unordered_map& source); templateconstexpr void merge(unordered_map&& source); // observersconstexpr hasher hash_function() const; constexpr key_equal key_eq() const; // map operationsconstexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; templateconstexpr iterator find(const K& k); templateconstexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; templateconstexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; templateconstexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; templateconstexpr pair equal_range(const K& k); templateconstexpr pair equal_range(const K& k) const; // bucket interfaceconstexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policyconstexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<*iter-key-type*>, class Allocator = allocator<*iter-to-alloc-type*>> unordered_multimap(InputIterator, InputIterator, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multimap<*iter-key-type*, *iter-mapped-type*, Hash, Pred, Allocator>; template>, class Pred = equal_to<*range-key-type*>, class Allocator = allocator<*range-to-alloc-type*>> unordered_multimap(from_range_t, R&&, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multimap<*range-key-type*, *range-mapped-type*, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator>> unordered_multimap(initializer_list>, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multimap; template unordered_multimap(InputIterator, InputIterator, typename *see below*::size_type, Allocator)-> unordered_multimap<*iter-key-type*, *iter-mapped-type*, hash<*iter-key-type*>, equal_to<*iter-key-type*>, Allocator>; template unordered_multimap(InputIterator, InputIterator, Allocator)-> unordered_multimap<*iter-key-type*, *iter-mapped-type*, hash<*iter-key-type*>, equal_to<*iter-key-type*>, Allocator>; template unordered_multimap(InputIterator, InputIterator, typename *see below*::size_type, Hash, Allocator)-> unordered_multimap<*iter-key-type*, *iter-mapped-type*, Hash, equal_to<*iter-key-type*>, Allocator>; template unordered_multimap(from_range_t, R&&, typename *see below*::size_type, Allocator)-> unordered_multimap<*range-key-type*, *range-mapped-type*, hash<*range-key-type*>, equal_to<*range-key-type*>, Allocator>; template unordered_multimap(from_range_t, R&&, Allocator)-> unordered_multimap<*range-key-type*, *range-mapped-type*, hash<*range-key-type*>, equal_to<*range-key-type*>, Allocator>; template unordered_multimap(from_range_t, R&&, typename *see below*::size_type, Hash, Allocator)-> unordered_multimap<*range-key-type*, *range-mapped-type*, Hash, equal_to<*range-key-type*>, Allocator>; template unordered_multimap(initializer_list>, typename *see below*::size_type, Allocator)-> unordered_multimap, equal_to, Allocator>; template unordered_multimap(initializer_list>, Allocator)-> unordered_multimap, equal_to, Allocator>; template unordered_multimap(initializer_list>, typename *see below*::size_type, Hash, Allocator)-> unordered_multimap, Allocator>;} [5](#multimap.overview-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14493) A size_type parameter type in an unordered_multimap deduction guide refers to the size_type member type of the type deduced by the deduction guide[.](#multimap.overview-5.sentence-1) #### [23.5.4.2](#multimap.cnstr) Constructors [[unord.multimap.cnstr]](unord.multimap.cnstr) [🔗](#lib:unordered_multimap,constructor) `constexpr unordered_multimap() : unordered_multimap(size_type(see below)) { } constexpr explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [1](#multimap.cnstr-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14508) *Effects*: Constructs an empty unordered_multimap using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#multimap.cnstr-1.sentence-1) For the default constructor, the number of buckets is implementation-defined[.](#multimap.cnstr-1.sentence-2) max_load_factor() returns 1.0[.](#multimap.cnstr-1.sentence-3) [2](#multimap.cnstr-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14517) *Complexity*: Constant[.](#multimap.cnstr-2.sentence-1) [🔗](#lib:unordered_multimap,constructor_) `template constexpr unordered_multimap(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[container-compatible-range](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R> constexpr unordered_multimap(from_range_t, R&& rg, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(initializer_list il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [3](#multimap.cnstr-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14541) *Effects*: Constructs an empty unordered_multimap using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#multimap.cnstr-3.sentence-1) If n is not provided, the number of buckets is implementation-defined[.](#multimap.cnstr-3.sentence-2) Then inserts elements from the range [f, l), rg, or il, respectively[.](#multimap.cnstr-3.sentence-3) max_load_factor() returns 1.0[.](#multimap.cnstr-3.sentence-4) [4](#multimap.cnstr-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14552) *Complexity*: Average case linear, worst case quadratic[.](#multimap.cnstr-4.sentence-1) #### [23.5.4.3](#multimap.modifiers) Modifiers [[unord.multimap.modifiers]](unord.multimap.modifiers) [🔗](#lib:unordered_multimap,insert) `template constexpr iterator insert(P&& obj); ` [1](#multimap.modifiers-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14566) *Constraints*: is_constructible_v is true[.](#multimap.modifiers-1.sentence-1) [2](#multimap.modifiers-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14570) *Effects*: Equivalent to: return emplace(std​::​forward

(obj)); [🔗](#lib:unordered_multimap,insert_) `template constexpr iterator insert(const_iterator hint, P&& obj); ` [3](#multimap.modifiers-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14582) *Constraints*: is_constructible_v is true[.](#multimap.modifiers-3.sentence-1) [4](#multimap.modifiers-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14586) *Effects*: Equivalent to:return emplace_hint(hint, std​::​forward

(obj)); #### [23.5.4.4](#multimap.erasure) Erasure [[unord.multimap.erasure]](unord.multimap.erasure) [🔗](#lib:erase_if,unordered_multimap) `template constexpr typename unordered_multimap::size_type erase_if(unordered_multimap& c, Predicate pred); ` [1](#multimap.erasure-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14602) *Effects*: Equivalent to:auto original_size = c.size();for (auto i = c.begin(), last = c.end(); i != last; ) {if (pred(*i)) { i = c.erase(i); } else {++i; }}return original_size - c.size(); ### [23.5.5](#set.syn) Header synopsis [[unord.set.syn]](unord.set.syn) [🔗](#header:%3cunordered_set%3e) #include // see [[compare.syn]](compare.syn "17.12.1 Header synopsis")#include // see [[initializer.list.syn]](initializer.list.syn "17.11.2 Header synopsis")namespace std {// [[unord.set]](#set "23.5.6 Class template unordered_­set"), class template unordered_settemplate, class Pred = equal_to, class Alloc = allocator>class unordered_set; // [[unord.multiset]](#multiset "23.5.7 Class template unordered_­multiset"), class template unordered_multisettemplate, class Pred = equal_to, class Alloc = allocator>class unordered_multiset; templateconstexpr bool operator==(const unordered_set& a, const unordered_set& b); templateconstexpr bool operator==(const unordered_multiset& a, const unordered_multiset& b); templateconstexpr void swap(unordered_set& x, unordered_set& y)noexcept(noexcept(x.swap(y))); templateconstexpr void swap(unordered_multiset& x, unordered_multiset& y)noexcept(noexcept(x.swap(y))); // [[unord.set.erasure]](#set.erasure "23.5.6.3 Erasure"), erasure for unordered_settemplateconstexpr typename unordered_set::size_type erase_if(unordered_set& c, Predicate pred); // [[unord.multiset.erasure]](#multiset.erasure "23.5.7.3 Erasure"), erasure for unordered_multisettemplateconstexpr typename unordered_multiset::size_type erase_if(unordered_multiset& c, Predicate pred); namespace pmr {template, class Pred = equal_to>using unordered_set = std::unordered_set>; template, class Pred = equal_to>using unordered_multiset = std::unordered_multiset>; }} ### [23.5.6](#set) Class template unordered_set [[unord.set]](unord.set) #### [23.5.6.1](#set.overview) Overview [[unord.set.overview]](unord.set.overview) [1](#set.overview-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14691) An unordered_set is an unordered associative container that supports unique keys (an unordered_set contains at most one of each key value) and in which the elements' keys are the elements themselves[.](#set.overview-1.sentence-1) The unordered_set class supports forward iterators[.](#set.overview-1.sentence-2) [2](#set.overview-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14701) An unordered_set meets all of the requirements of a container ([[container.reqmts]](container.reqmts "23.2.2.2 Container requirements")), of an allocator-aware container ([[container.alloc.reqmts]](container.alloc.reqmts "23.2.2.5 Allocator-aware containers")), and of an unordered associative container ([[unord.req]](unord.req "23.2.8 Unordered associative containers"))[.](#set.overview-2.sentence-1) It provides the operations described in the preceding requirements table for unique keys; that is, an unordered_set supports the a_uniq operations in that table, not the a_eq operations[.](#set.overview-2.sentence-2) For an unordered_set the key_type and the value_type are both Key[.](#set.overview-2.sentence-3) The iterator and const_iterator types are both constant iterator types[.](#set.overview-2.sentence-4) It is unspecified whether they are the same type[.](#set.overview-2.sentence-5) [3](#set.overview-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14714) Subclause [[unord.set]](#set "23.5.6 Class template unordered_­set") only describes operations on unordered_set that are not described in one of the requirement tables, or for which there is additional semantic information[.](#set.overview-3.sentence-1) [4](#set.overview-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14719) The types iterator and const_iterator meet the constexpr iterator requirements ([[iterator.requirements.general]](iterator.requirements.general "24.3.1 General"))[.](#set.overview-4.sentence-1) [🔗](#lib:unordered_set__) namespace std {template, class Pred = equal_to, class Allocator = allocator>class unordered_set {public:// typesusing key_type = Key; using value_type = Key; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = typename allocator_traits::pointer; using const_pointer = typename allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using difference_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using node_type = *unspecified*; using insert_return_type = *insert-return-type*; // [[unord.set.cnstr]](#set.cnstr "23.5.6.2 Constructors"), construct/copy/destroyconstexpr unordered_set(); constexpr explicit unordered_set(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); templateconstexpr unordered_set(InputIterator f, InputIterator l, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_set(from_range_t, R&& rg, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_set(const unordered_set&); constexpr unordered_set(unordered_set&&); constexpr explicit unordered_set(const Allocator&); constexpr unordered_set(const unordered_set&, const type_identity_t&); constexpr unordered_set(unordered_set&&, const type_identity_t&); constexpr unordered_set(initializer_list il, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_set(size_type n, const allocator_type& a): unordered_set(n, hasher(), key_equal(), a) { }constexpr unordered_set(size_type n, const hasher& hf, const allocator_type& a): unordered_set(n, hf, key_equal(), a) { }templateconstexpr unordered_set(InputIterator f, InputIterator l, size_type n, const allocator_type& a): unordered_set(f, l, n, hasher(), key_equal(), a) { }templateconstexpr unordered_set(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a): unordered_set(f, l, n, hf, key_equal(), a) { }constexpr unordered_set(initializer_list il, size_type n, const allocator_type& a): unordered_set(il, n, hasher(), key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_set(from_range_t, R&& rg, size_type n, const allocator_type& a): unordered_set(from_range, std::forward(rg), n, hasher(), key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_set(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a): unordered_set(from_range, std::forward(rg), n, hf, key_equal(), a) { }constexpr unordered_set(initializer_list il, size_type n, const hasher& hf, const allocator_type& a): unordered_set(il, n, hf, key_equal(), a) { }constexpr ~unordered_set(); constexpr unordered_set& operator=(const unordered_set&); constexpr unordered_set& operator=(unordered_set&&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_set& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iteratorsconstexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacityconstexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // [[unord.set.modifiers]](#set.modifiers "23.5.6.4 Modifiers"), modifierstemplate constexpr pair emplace(Args&&... args); templateconstexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr pair insert(const value_type& obj); constexpr pair insert(value_type&& obj); template constexpr pair insert(K&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr iterator insert(const_iterator hint, K&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr insert_return_type insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position)requires (![same_as](concept.same#concept:same_as "18.4.2 Concept same_­as [concept.same]")); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_set&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; templateconstexpr void merge(unordered_set& source); templateconstexpr void merge(unordered_set&& source); templateconstexpr void merge(unordered_multiset& source); templateconstexpr void merge(unordered_multiset&& source); // observersconstexpr hasher hash_function() const; constexpr key_equal key_eq() const; // set operationsconstexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; templateconstexpr iterator find(const K& k); templateconstexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; templateconstexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; templateconstexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; templateconstexpr pair equal_range(const K& k); templateconstexpr pair equal_range(const K& k) const; // bucket interfaceconstexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policyconstexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<*iter-value-type*>, class Allocator = allocator<*iter-value-type*>> unordered_set(InputIterator, InputIterator, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_set<*iter-value-type*, Hash, Pred, Allocator>; template>, class Pred = equal_to>, class Allocator = allocator>> unordered_set(from_range_t, R&&, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_set, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator> unordered_set(initializer_list, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_set; template unordered_set(InputIterator, InputIterator, typename *see below*::size_type, Allocator)-> unordered_set<*iter-value-type*, hash<*iter-value-type*>, equal_to<*iter-value-type*>, Allocator>; template unordered_set(InputIterator, InputIterator, typename *see below*::size_type, Hash, Allocator)-> unordered_set<*iter-value-type*, Hash, equal_to<*iter-value-type*>, Allocator>; template unordered_set(from_range_t, R&&, typename *see below*::size_type, Allocator)-> unordered_set, hash>, equal_to>, Allocator>; template unordered_set(from_range_t, R&&, Allocator)-> unordered_set, hash>, equal_to>, Allocator>; template unordered_set(from_range_t, R&&, typename *see below*::size_type, Hash, Allocator)-> unordered_set, Hash, equal_to>, Allocator>; template unordered_set(initializer_list, typename *see below*::size_type, Allocator)-> unordered_set, equal_to, Allocator>; template unordered_set(initializer_list, typename *see below*::size_type, Hash, Allocator)-> unordered_set, Allocator>;} [5](#set.overview-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14970) A size_type parameter type in an unordered_set deduction guide refers to the size_type member type of the type deduced by the deduction guide[.](#set.overview-5.sentence-1) #### [23.5.6.2](#set.cnstr) Constructors [[unord.set.cnstr]](unord.set.cnstr) [🔗](#lib:unordered_set,constructor) `constexpr unordered_set() : unordered_set(size_type(see below)) { } constexpr explicit unordered_set(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [1](#set.cnstr-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14986) *Effects*: Constructs an empty unordered_set using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#set.cnstr-1.sentence-1) For the default constructor, the number of buckets is implementation-defined[.](#set.cnstr-1.sentence-2) max_load_factor() returns 1.0[.](#set.cnstr-1.sentence-3) [2](#set.cnstr-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14995) *Complexity*: Constant[.](#set.cnstr-2.sentence-1) [🔗](#lib:unordered_set,constructor_) `template constexpr unordered_set(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[container-compatible-range](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R> constexpr unordered_multiset(from_range_t, R&& rg, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_set(initializer_list il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [3](#set.cnstr-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15019) *Effects*: Constructs an empty unordered_set using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#set.cnstr-3.sentence-1) If n is not provided, the number of buckets is implementation-defined[.](#set.cnstr-3.sentence-2) Then inserts elements from the range [f, l), rg, or il, respectively[.](#set.cnstr-3.sentence-3) max_load_factor() returns 1.0[.](#set.cnstr-3.sentence-4) [4](#set.cnstr-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15030) *Complexity*: Average case linear, worst case quadratic[.](#set.cnstr-4.sentence-1) #### [23.5.6.3](#set.erasure) Erasure [[unord.set.erasure]](unord.set.erasure) [🔗](#lib:erase_if,unordered_set) `template constexpr typename unordered_set::size_type erase_if(unordered_set& c, Predicate pred); ` [1](#set.erasure-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15045) *Effects*: Equivalent to:auto original_size = c.size();for (auto i = c.begin(), last = c.end(); i != last; ) {if (pred(*i)) { i = c.erase(i); } else {++i; }}return original_size - c.size(); #### [23.5.6.4](#set.modifiers) Modifiers [[unord.set.modifiers]](unord.set.modifiers) [🔗](#lib:insert,unordered_set) `template constexpr pair insert(K&& obj); template constexpr iterator insert(const_iterator hint, K&& obj); ` [1](#set.modifiers-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15070) *Constraints*: The [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3 Qualified names [expr.prim.id.qual]")*s* Hash​::​is_transparent andPred​::​is_transparent are valid and denote types[.](#set.modifiers-1.sentence-1) For the second overload,is_convertible_v andis_convertible_v are both false[.](#set.modifiers-1.sentence-2) [2](#set.modifiers-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15078) *Preconditions*: value_type is *Cpp17EmplaceConstructible* into unordered_set from std​::​forward (obj)[.](#set.modifiers-2.sentence-1) [3](#set.modifiers-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15083) *Effects*: If the set already contains an element that is equivalent to obj, there is no effect[.](#set.modifiers-3.sentence-1) Otherwise, let h be hash_function()(obj)[.](#set.modifiers-3.sentence-2) Constructs an object u of type value_type with std​::​forward(obj)[.](#set.modifiers-3.sentence-3) If hash_function()(u) != h || contains(u) is true, the behavior is undefined[.](#set.modifiers-3.sentence-4) Inserts u into *this[.](#set.modifiers-3.sentence-5) [4](#set.modifiers-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15094) *Returns*: For the first overload, the bool component of the returned pair is true if and only if the insertion took place[.](#set.modifiers-4.sentence-1) The returned iterator points to the set element that is equivalent to obj[.](#set.modifiers-4.sentence-2) [5](#set.modifiers-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15102) *Complexity*: Average case constant, worst case linear[.](#set.modifiers-5.sentence-1) ### [23.5.7](#multiset) Class template unordered_multiset [[unord.multiset]](unord.multiset) #### [23.5.7.1](#multiset.overview) Overview [[unord.multiset.overview]](unord.multiset.overview) [1](#multiset.overview-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15112) An unordered_multiset is an unordered associative container that supports equivalent keys (an instance of unordered_multiset may contain multiple copies of the same key value) and in which each element's key is the element itself[.](#multiset.overview-1.sentence-1) The unordered_multiset class supports forward iterators[.](#multiset.overview-1.sentence-2) [2](#multiset.overview-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15122) An unordered_multiset meets all of the requirements of a container ([[container.reqmts]](container.reqmts "23.2.2.2 Container requirements")), of an allocator-aware container ([[container.alloc.reqmts]](container.alloc.reqmts "23.2.2.5 Allocator-aware containers")), and of an unordered associative container ([[unord.req]](unord.req "23.2.8 Unordered associative containers"))[.](#multiset.overview-2.sentence-1) It provides the operations described in the preceding requirements table for equivalent keys; that is, an unordered_multiset supports the a_eq operations in that table, not the a_uniq operations[.](#multiset.overview-2.sentence-2) For an unordered_multiset the key_type and the value_type are both Key[.](#multiset.overview-2.sentence-3) The iterator and const_iterator types are both constant iterator types[.](#multiset.overview-2.sentence-4) It is unspecified whether they are the same type[.](#multiset.overview-2.sentence-5) [3](#multiset.overview-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15134) Subclause [[unord.multiset]](#multiset "23.5.7 Class template unordered_­multiset") only describes operations on unordered_multiset that are not described in one of the requirement tables, or for which there is additional semantic information[.](#multiset.overview-3.sentence-1) [4](#multiset.overview-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15139) The types iterator and const_iterator meet the constexpr iterator requirements ([[iterator.requirements.general]](iterator.requirements.general "24.3.1 General"))[.](#multiset.overview-4.sentence-1) [🔗](#lib:unordered_multiset__) namespace std {template, class Pred = equal_to, class Allocator = allocator>class unordered_multiset {public:// typesusing key_type = Key; using value_type = Key; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = typename allocator_traits::pointer; using const_pointer = typename allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using difference_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using node_type = *unspecified*; // [[unord.multiset.cnstr]](#multiset.cnstr "23.5.7.2 Constructors"), construct/copy/destroyconstexpr unordered_multiset(); constexpr explicit unordered_multiset(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); templateconstexpr unordered_multiset(InputIterator f, InputIterator l, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multiset(from_range_t, R&& rg, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multiset(const unordered_multiset&); constexpr unordered_multiset(unordered_multiset&&); constexpr explicit unordered_multiset(const Allocator&); constexpr unordered_multiset(const unordered_multiset&, const type_identity_t&); constexpr unordered_multiset(unordered_multiset&&, const type_identity_t&); constexpr unordered_multiset(initializer_list il, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multiset(size_type n, const allocator_type& a): unordered_multiset(n, hasher(), key_equal(), a) { }constexpr unordered_multiset(size_type n, const hasher& hf, const allocator_type& a): unordered_multiset(n, hf, key_equal(), a) { }templateconstexpr unordered_multiset(InputIterator f, InputIterator l, size_type n, const allocator_type& a): unordered_multiset(f, l, n, hasher(), key_equal(), a) { }templateconstexpr unordered_multiset(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a): unordered_multiset(f, l, n, hf, key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multiset(from_range_t, R&& rg, size_type n, const allocator_type& a): unordered_multiset(from_range, std::forward(rg), n, hasher(), key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multiset(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a): unordered_multiset(from_range, std::forward(rg), n, hf, key_equal(), a) { }constexpr unordered_multiset(initializer_list il, size_type n, const allocator_type& a): unordered_multiset(il, n, hasher(), key_equal(), a) { }constexpr unordered_multiset(initializer_list il, size_type n, const hasher& hf, const allocator_type& a): unordered_multiset(il, n, hf, key_equal(), a) { }constexpr ~unordered_multiset(); constexpr unordered_multiset& operator=(const unordered_multiset&); constexpr unordered_multiset& operator=(unordered_multiset&&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_multiset& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iteratorsconstexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacityconstexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // modifierstemplate constexpr iterator emplace(Args&&... args); templateconstexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& obj); constexpr iterator insert(value_type&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr iterator insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position)requires (![same_as](concept.same#concept:same_as "18.4.2 Concept same_­as [concept.same]")); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_multiset&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; templateconstexpr void merge(unordered_multiset& source); templateconstexpr void merge(unordered_multiset&& source); templateconstexpr void merge(unordered_set& source); templateconstexpr void merge(unordered_set&& source); // observersconstexpr hasher hash_function() const; constexpr key_equal key_eq() const; // set operationsconstexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; templateconstexpr iterator find(const K& k); templateconstexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; templateconstexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; templateconstexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; templateconstexpr pair equal_range(const K& k); templateconstexpr pair equal_range(const K& k) const; // bucket interfaceconstexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policyconstexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<*iter-value-type*>, class Allocator = allocator<*iter-value-type*>> unordered_multiset(InputIterator, InputIterator, *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multiset<*iter-value-type*, Hash, Pred, Allocator>; template>, class Pred = equal_to>, class Allocator = allocator>> unordered_multiset(from_range_t, R&&, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multiset, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator> unordered_multiset(initializer_list, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multiset; template unordered_multiset(InputIterator, InputIterator, typename *see below*::size_type, Allocator)-> unordered_multiset<*iter-value-type*, hash<*iter-value-type*>, equal_to<*iter-value-type*>, Allocator>; template unordered_multiset(InputIterator, InputIterator, typename *see below*::size_type, Hash, Allocator)-> unordered_multiset<*iter-value-type*, Hash, equal_to<*iter-value-type*>, Allocator>; template unordered_multiset(from_range_t, R&&, typename *see below*::size_type, Allocator)-> unordered_multiset, hash>, equal_to>, Allocator>; template unordered_multiset(from_range_t, R&&, Allocator)-> unordered_multiset, hash>, equal_to>, Allocator>; template unordered_multiset(from_range_t, R&&, typename *see below*::size_type, Hash, Allocator)-> unordered_multiset, Hash, equal_to>, Allocator>; template unordered_multiset(initializer_list, typename *see below*::size_type, Allocator)-> unordered_multiset, equal_to, Allocator>; template unordered_multiset(initializer_list, typename *see below*::size_type, Hash, Allocator)-> unordered_multiset, Allocator>;} [5](#multiset.overview-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15388) A size_type parameter type in an unordered_multiset deduction guide refers to the size_type member type of the type deduced by the deduction guide[.](#multiset.overview-5.sentence-1) #### [23.5.7.2](#multiset.cnstr) Constructors [[unord.multiset.cnstr]](unord.multiset.cnstr) [🔗](#lib:unordered_multiset,constructor) `constexpr unordered_multiset() : unordered_multiset(size_type(see below)) { } constexpr explicit unordered_multiset(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [1](#multiset.cnstr-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15404) *Effects*: Constructs an empty unordered_multiset using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#multiset.cnstr-1.sentence-1) For the default constructor, the number of buckets is implementation-defined[.](#multiset.cnstr-1.sentence-2) max_load_factor() returns 1.0[.](#multiset.cnstr-1.sentence-3) [2](#multiset.cnstr-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15413) *Complexity*: Constant[.](#multiset.cnstr-2.sentence-1) [🔗](#lib:unordered_multiset,constructor_) `template constexpr unordered_multiset(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[container-compatible-range](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R> constexpr unordered_multiset(from_range_t, R&& rg, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multiset(initializer_list il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [3](#multiset.cnstr-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15437) *Effects*: Constructs an empty unordered_multiset using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#multiset.cnstr-3.sentence-1) If n is not provided, the number of buckets is implementation-defined[.](#multiset.cnstr-3.sentence-2) Then inserts elements from the range [f, l), rg, or il, respectively[.](#multiset.cnstr-3.sentence-3) max_load_factor() returns 1.0[.](#multiset.cnstr-3.sentence-4) [4](#multiset.cnstr-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15448) *Complexity*: Average case linear, worst case quadratic[.](#multiset.cnstr-4.sentence-1) #### [23.5.7.3](#multiset.erasure) Erasure [[unord.multiset.erasure]](unord.multiset.erasure) [🔗](#lib:erase_if,unordered_multiset) `template constexpr typename unordered_multiset::size_type erase_if(unordered_multiset& c, Predicate pred); ` [1](#multiset.erasure-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L15463) *Effects*: Equivalent to:auto original_size = c.size();for (auto i = c.begin(), last = c.end(); i != last; ) {if (pred(*i)) { i = c.erase(i); } else {++i; }}return original_size - c.size();