[unord.multimap] # 23 Containers library [[containers]](./#containers) ## 23.5 Unordered associative containers [[unord]](unord#multimap) ### 23.5.4 Class template unordered_multimap [unord.multimap] #### [23.5.4.1](#overview) Overview [[unord.multimap.overview]](unord.multimap.overview) [1](#overview-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14202) An unordered_multimap is an unordered associative container that supports equivalent keys (an instance of unordered_multimap may contain multiple copies of each key value) and that associates values of another type mapped_type with the keys[.](#overview-1.sentence-1) The unordered_multimap class supports forward iterators[.](#overview-1.sentence-2) [2](#overview-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14212) An unordered_multimap meets all of the requirements of a container ([[container.reqmts]](container.reqmts "23.2.2.2 Container requirements")), of an allocator-aware container ([[container.alloc.reqmts]](container.alloc.reqmts "23.2.2.5 Allocator-aware containers")), and of an unordered associative container ([[unord.req]](unord.req "23.2.8 Unordered associative containers"))[.](#overview-2.sentence-1) It provides the operations described in the preceding requirements table for equivalent keys; that is, an unordered_multimap supports the a_eq operations in that table, not the a_uniq operations[.](#overview-2.sentence-2) For an unordered_multimap the key_type is Key, the mapped_type is T, and the value_type is pair[.](#overview-2.sentence-3) [3](#overview-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14224) Subclause [unord.multimap] only describes operations on unordered_multimap that are not described in one of the requirement tables, or for which there is additional semantic information[.](#overview-3.sentence-1) [4](#overview-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14229) The types iterator and const_iterator meet the constexpr iterator requirements ([[iterator.requirements.general]](iterator.requirements.general "24.3.1 General"))[.](#overview-4.sentence-1) [🔗](#lib:unordered_multimap_) namespace std {template, class Pred = equal_to, class Allocator = allocator>>class unordered_multimap {public:// typesusing key_type = Key; using mapped_type = T; using value_type = pair; using hasher = Hash; using key_equal = Pred; using allocator_type = Allocator; using pointer = typename allocator_traits::pointer; using const_pointer = typename allocator_traits::const_pointer; using reference = value_type&; using const_reference = const value_type&; using size_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using difference_type = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using const_local_iterator = *implementation-defined*; // see [[container.requirements]](container.requirements "23.2 Requirements")using node_type = *unspecified*; // [[unord.multimap.cnstr]](#cnstr "23.5.4.2 Constructors"), construct/copy/destroyconstexpr unordered_multimap(); constexpr explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); templateconstexpr unordered_multimap(InputIterator f, InputIterator l, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multimap(from_range_t, R&& rg, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(const unordered_multimap&); constexpr unordered_multimap(unordered_multimap&&); constexpr explicit unordered_multimap(const Allocator&); constexpr unordered_multimap(const unordered_multimap&, const type_identity_t&); constexpr unordered_multimap(unordered_multimap&&, const type_identity_t&); constexpr unordered_multimap(initializer_list il, size_type n = *see below*, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(size_type n, const allocator_type& a): unordered_multimap(n, hasher(), key_equal(), a) { }constexpr unordered_multimap(size_type n, const hasher& hf, const allocator_type& a): unordered_multimap(n, hf, key_equal(), a) { }templateconstexpr unordered_multimap(InputIterator f, InputIterator l, size_type n, const allocator_type& a): unordered_multimap(f, l, n, hasher(), key_equal(), a) { }templateconstexpr unordered_multimap(InputIterator f, InputIterator l, size_type n, const hasher& hf, const allocator_type& a): unordered_multimap(f, l, n, hf, key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multimap(from_range_t, R&& rg, size_type n, const allocator_type& a): unordered_multimap(from_range, std::forward(rg), n, hasher(), key_equal(), a) { }template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr unordered_multimap(from_range_t, R&& rg, size_type n, const hasher& hf, const allocator_type& a): unordered_multimap(from_range, std::forward(rg), n, hf, key_equal(), a) { }constexpr unordered_multimap(initializer_list il, size_type n, const allocator_type& a): unordered_multimap(il, n, hasher(), key_equal(), a) { }constexpr unordered_multimap(initializer_list il, size_type n, const hasher& hf, const allocator_type& a): unordered_multimap(il, n, hf, key_equal(), a) { }constexpr ~unordered_multimap(); constexpr unordered_multimap& operator=(const unordered_multimap&); constexpr unordered_multimap& operator=(unordered_multimap&&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_move_assignable_v && is_nothrow_move_assignable_v); constexpr unordered_multimap& operator=(initializer_list); constexpr allocator_type get_allocator() const noexcept; // iteratorsconstexpr iterator begin() noexcept; constexpr const_iterator begin() const noexcept; constexpr iterator end() noexcept; constexpr const_iterator end() const noexcept; constexpr const_iterator cbegin() const noexcept; constexpr const_iterator cend() const noexcept; // capacityconstexpr bool empty() const noexcept; constexpr size_type size() const noexcept; constexpr size_type max_size() const noexcept; // [[unord.multimap.modifiers]](#modifiers "23.5.4.3 Modifiers"), modifierstemplate constexpr iterator emplace(Args&&... args); templateconstexpr iterator emplace_hint(const_iterator position, Args&&... args); constexpr iterator insert(const value_type& obj); constexpr iterator insert(value_type&& obj); template constexpr iterator insert(P&& obj); constexpr iterator insert(const_iterator hint, const value_type& obj); constexpr iterator insert(const_iterator hint, value_type&& obj); template constexpr iterator insert(const_iterator hint, P&& obj); template constexpr void insert(InputIterator first, InputIterator last); template<[*container-compatible-range*](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R>constexpr void insert_range(R&& rg); constexpr void insert(initializer_list); constexpr node_type extract(const_iterator position); constexpr node_type extract(const key_type& x); template constexpr node_type extract(K&& x); constexpr iterator insert(node_type&& nh); constexpr iterator insert(const_iterator hint, node_type&& nh); constexpr iterator erase(iterator position); constexpr iterator erase(const_iterator position); constexpr size_type erase(const key_type& k); template constexpr size_type erase(K&& x); constexpr iterator erase(const_iterator first, const_iterator last); constexpr void swap(unordered_multimap&)noexcept(allocator_traits::is_always_equal::value && is_nothrow_swappable_v && is_nothrow_swappable_v); constexpr void clear() noexcept; templateconstexpr void merge(unordered_multimap& source); templateconstexpr void merge(unordered_multimap&& source); templateconstexpr void merge(unordered_map& source); templateconstexpr void merge(unordered_map&& source); // observersconstexpr hasher hash_function() const; constexpr key_equal key_eq() const; // map operationsconstexpr iterator find(const key_type& k); constexpr const_iterator find(const key_type& k) const; templateconstexpr iterator find(const K& k); templateconstexpr const_iterator find(const K& k) const; constexpr size_type count(const key_type& k) const; templateconstexpr size_type count(const K& k) const; constexpr bool contains(const key_type& k) const; templateconstexpr bool contains(const K& k) const; constexpr pair equal_range(const key_type& k); constexpr pair equal_range(const key_type& k) const; templateconstexpr pair equal_range(const K& k); templateconstexpr pair equal_range(const K& k) const; // bucket interfaceconstexpr size_type bucket_count() const noexcept; constexpr size_type max_bucket_count() const noexcept; constexpr size_type bucket_size(size_type n) const; constexpr size_type bucket(const key_type& k) const; template constexpr size_type bucket(const K& k) const; constexpr local_iterator begin(size_type n); constexpr const_local_iterator begin(size_type n) const; constexpr local_iterator end(size_type n); constexpr const_local_iterator end(size_type n) const; constexpr const_local_iterator cbegin(size_type n) const; constexpr const_local_iterator cend(size_type n) const; // hash policyconstexpr float load_factor() const noexcept; constexpr float max_load_factor() const noexcept; constexpr void max_load_factor(float z); constexpr void rehash(size_type n); constexpr void reserve(size_type n); }; template>, class Pred = equal_to<*iter-key-type*>, class Allocator = allocator<*iter-to-alloc-type*>> unordered_multimap(InputIterator, InputIterator, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multimap<*iter-key-type*, *iter-mapped-type*, Hash, Pred, Allocator>; template>, class Pred = equal_to<*range-key-type*>, class Allocator = allocator<*range-to-alloc-type*>> unordered_multimap(from_range_t, R&&, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multimap<*range-key-type*, *range-mapped-type*, Hash, Pred, Allocator>; template, class Pred = equal_to, class Allocator = allocator>> unordered_multimap(initializer_list>, typename *see below*::size_type = *see below*, Hash = Hash(), Pred = Pred(), Allocator = Allocator())-> unordered_multimap; template unordered_multimap(InputIterator, InputIterator, typename *see below*::size_type, Allocator)-> unordered_multimap<*iter-key-type*, *iter-mapped-type*, hash<*iter-key-type*>, equal_to<*iter-key-type*>, Allocator>; template unordered_multimap(InputIterator, InputIterator, Allocator)-> unordered_multimap<*iter-key-type*, *iter-mapped-type*, hash<*iter-key-type*>, equal_to<*iter-key-type*>, Allocator>; template unordered_multimap(InputIterator, InputIterator, typename *see below*::size_type, Hash, Allocator)-> unordered_multimap<*iter-key-type*, *iter-mapped-type*, Hash, equal_to<*iter-key-type*>, Allocator>; template unordered_multimap(from_range_t, R&&, typename *see below*::size_type, Allocator)-> unordered_multimap<*range-key-type*, *range-mapped-type*, hash<*range-key-type*>, equal_to<*range-key-type*>, Allocator>; template unordered_multimap(from_range_t, R&&, Allocator)-> unordered_multimap<*range-key-type*, *range-mapped-type*, hash<*range-key-type*>, equal_to<*range-key-type*>, Allocator>; template unordered_multimap(from_range_t, R&&, typename *see below*::size_type, Hash, Allocator)-> unordered_multimap<*range-key-type*, *range-mapped-type*, Hash, equal_to<*range-key-type*>, Allocator>; template unordered_multimap(initializer_list>, typename *see below*::size_type, Allocator)-> unordered_multimap, equal_to, Allocator>; template unordered_multimap(initializer_list>, Allocator)-> unordered_multimap, equal_to, Allocator>; template unordered_multimap(initializer_list>, typename *see below*::size_type, Hash, Allocator)-> unordered_multimap, Allocator>;} [5](#overview-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14493) A size_type parameter type in an unordered_multimap deduction guide refers to the size_type member type of the type deduced by the deduction guide[.](#overview-5.sentence-1) #### [23.5.4.2](#cnstr) Constructors [[unord.multimap.cnstr]](unord.multimap.cnstr) [🔗](#lib:unordered_multimap,constructor) `constexpr unordered_multimap() : unordered_multimap(size_type(see below)) { } constexpr explicit unordered_multimap(size_type n, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [1](#cnstr-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14508) *Effects*: Constructs an empty unordered_multimap using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#cnstr-1.sentence-1) For the default constructor, the number of buckets is implementation-defined[.](#cnstr-1.sentence-2) max_load_factor() returns 1.0[.](#cnstr-1.sentence-3) [2](#cnstr-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14517) *Complexity*: Constant[.](#cnstr-2.sentence-1) [🔗](#lib:unordered_multimap,constructor_) `template constexpr unordered_multimap(InputIterator f, InputIterator l, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); template<[container-compatible-range](container.intro.reqmts#concept:container-compatible-range "23.2.2.1 Introduction [container.intro.reqmts]") R> constexpr unordered_multimap(from_range_t, R&& rg, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); constexpr unordered_multimap(initializer_list il, size_type n = see below, const hasher& hf = hasher(), const key_equal& eql = key_equal(), const allocator_type& a = allocator_type()); ` [3](#cnstr-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14541) *Effects*: Constructs an empty unordered_multimap using the specified hash function, key equality predicate, and allocator, and using at least n buckets[.](#cnstr-3.sentence-1) If n is not provided, the number of buckets is implementation-defined[.](#cnstr-3.sentence-2) Then inserts elements from the range [f, l), rg, or il, respectively[.](#cnstr-3.sentence-3) max_load_factor() returns 1.0[.](#cnstr-3.sentence-4) [4](#cnstr-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14552) *Complexity*: Average case linear, worst case quadratic[.](#cnstr-4.sentence-1) #### [23.5.4.3](#modifiers) Modifiers [[unord.multimap.modifiers]](unord.multimap.modifiers) [🔗](#lib:unordered_multimap,insert) `template constexpr iterator insert(P&& obj); ` [1](#modifiers-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14566) *Constraints*: is_constructible_v is true[.](#modifiers-1.sentence-1) [2](#modifiers-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14570) *Effects*: Equivalent to: return emplace(std​::​forward

(obj)); [🔗](#lib:unordered_multimap,insert_) `template constexpr iterator insert(const_iterator hint, P&& obj); ` [3](#modifiers-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14582) *Constraints*: is_constructible_v is true[.](#modifiers-3.sentence-1) [4](#modifiers-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14586) *Effects*: Equivalent to:return emplace_hint(hint, std​::​forward

(obj)); #### [23.5.4.4](#erasure) Erasure [[unord.multimap.erasure]](unord.multimap.erasure) [🔗](#lib:erase_if,unordered_multimap) `template constexpr typename unordered_multimap::size_type erase_if(unordered_multimap& c, Predicate pred); ` [1](#erasure-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/containers.tex#L14602) *Effects*: Equivalent to:auto original_size = c.size();for (auto i = c.begin(), last = c.end(); i != last; ) {if (pred(*i)) { i = c.erase(i); } else {++i; }}return original_size - c.size();