[sf.cmath.legendre] # 29 Numerics library [[numerics]](./#numerics) ## 29.7 Mathematical functions for floating-point types [[c.math]](c.math#sf.cmath.legendre) ### 29.7.6 Mathematical special functions [[sf.cmath]](sf.cmath#legendre) #### 29.7.6.18 Legendre polynomials [sf.cmath.legendre] [🔗](#lib:legendre) `floating-point-type legendre(unsigned l, floating-point-type x); float legendref(unsigned l, float x); long double legendrel(unsigned l, long double x); ` [1](#1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/numerics.tex#L10632) *Effects*: These functions compute the Legendre polynomials of their respective argumentsl and x[.](#1.sentence-1) [2](#2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/numerics.tex#L10638) *Returns*: Pℓ(x), where Pℓ is given by Formula [29.38](#eq:sf.cmath.legendre),l is l, andx is x[.](#2.sentence-1) Pℓ(x)=12ℓℓ!dℓdxℓ(x2−1)ℓ , for |x|≤1(29.38) [3](#3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/numerics.tex#L10651) *Remarks*: The effect of calling each of these functions is implementation-defined if l >= 128[.](#3.sentence-1)