[linalg.conjtransposed] # 29 Numerics library [[numerics]](./#numerics) ## 29.9 Basic linear algebra algorithms [[linalg]](linalg#conjtransposed) ### 29.9.11 Conjugate transpose in-place transform [linalg.conjtransposed] [1](#1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/numerics.tex#L13268) The conjugate_transposed function returns a conjugate transpose view of an object[.](#1.sentence-1) This combines the effects of transposed and conjugated[.](#1.sentence-2) [🔗](#lib:conjugate_transposed) ` template constexpr auto conjugate_transposed(mdspan a); ` [2](#2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/numerics.tex#L13279) *Effects*: Equivalent to: return conjugated(transposed(a)); [3](#3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/numerics.tex#L13284) [*Example [1](#example-1)*: void test_conjugate_transposed(mdspan, extents> a) {const auto num_rows = a.extent(0); const auto num_cols = a.extent(1); auto a_ct = conjugate_transposed(a); assert(num_rows == a_ct.extent(1)); assert(num_cols == a_ct.extent(0)); assert(a.stride(0) == a_ct.stride(1)); assert(a.stride(1) == a_ct.stride(0)); for (size_t row = 0; row < num_rows; ++row) {for (size_t col = 0; col < num_rows; ++col) { assert(a[row, col] == conj(a_ct[col, row])); }}auto a_ct_ct = conjugate_transposed(a_ct); assert(num_rows == a_ct_ct.extent(0)); assert(num_cols == a_ct_ct.extent(1)); assert(a.stride(0) == a_ct_ct.stride(0)); assert(a.stride(1) == a_ct_ct.stride(1)); for (size_t row = 0; row < num_rows; ++row) {for (size_t col = 0; col < num_rows; ++col) { assert(a[row, col] == a_ct_ct[row, col]); assert(conj(a_ct[col, row]) == a_ct_ct[row, col]); }}} — *end example*]