[expr.post] # 7 Expressions [[expr]](./#expr) ## 7.6 Compound expressions [[expr.compound]](expr.compound#expr.post) ### 7.6.1 Postfix expressions [expr.post] #### [7.6.1.1](#general) General [[expr.post.general]](expr.post.general) [1](#general-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3658) Postfix expressions group left-to-right[.](#general-1.sentence-1) [postfix-expression:](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") [*primary-expression*](expr.prim.grammar#nt:primary-expression "7.5.1 Grammar [expr.prim.grammar]") [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") [ [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]")opt ] [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") ( [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]")opt ) [*simple-type-specifier*](dcl.type.simple#nt:simple-type-specifier "9.2.9.3 Simple type specifiers [dcl.type.simple]") ( [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]")opt ) [*typename-specifier*](temp.res.general#nt:typename-specifier "13.8.1 General [temp.res.general]") ( [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]")opt ) [*simple-type-specifier*](dcl.type.simple#nt:simple-type-specifier "9.2.9.3 Simple type specifiers [dcl.type.simple]") [*braced-init-list*](dcl.init.general#nt:braced-init-list "9.5.1 General [dcl.init.general]") [*typename-specifier*](temp.res.general#nt:typename-specifier "13.8.1 General [temp.res.general]") [*braced-init-list*](dcl.init.general#nt:braced-init-list "9.5.1 General [dcl.init.general]") [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") . templateopt [*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]") [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") . [*splice-expression*](expr.prim.splice#nt:splice-expression "7.5.9 Expression splicing [expr.prim.splice]") [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") -> templateopt [*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]") [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") -> [*splice-expression*](expr.prim.splice#nt:splice-expression "7.5.9 Expression splicing [expr.prim.splice]") [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") ++ [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") -- dynamic_cast < [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") > ( [*expression*](expr.comma#nt:expression "7.6.20 Comma operator [expr.comma]") ) static_cast < [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") > ( [*expression*](expr.comma#nt:expression "7.6.20 Comma operator [expr.comma]") ) reinterpret_cast < [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") > ( [*expression*](expr.comma#nt:expression "7.6.20 Comma operator [expr.comma]") ) const_cast < [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") > ( [*expression*](expr.comma#nt:expression "7.6.20 Comma operator [expr.comma]") ) typeid ( [*expression*](expr.comma#nt:expression "7.6.20 Comma operator [expr.comma]") ) typeid ( [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") ) [expression-list:](#nt:expression-list "7.6.1.1 General [expr.post.general]") [*initializer-list*](dcl.init.general#nt:initializer-list "9.5.1 General [dcl.init.general]") [2](#general-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3689) [*Note [1](#general-note-1)*: The > token following the[*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") in a dynamic_cast,static_cast, reinterpret_cast, orconst_cast can be the product of replacing a>> token by two consecutive > tokens ([[temp.names]](temp.names "13.3 Names of template specializations"))[.](#general-2.sentence-1) — *end note*] #### [7.6.1.2](#expr.sub) Subscripting [[expr.sub]](expr.sub) [1](#expr.sub-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3701) A [*subscript expression*](#def:expression,subscript "7.6.1.2 Subscripting [expr.sub]") is a postfix expression followed by square brackets containing a possibly empty, comma-separated list of [*initializer-clause*](dcl.init.general#nt:initializer-clause "9.5.1 General [dcl.init.general]")*s* that constitute the arguments to the subscript operator[.](#expr.sub-1.sentence-1) The [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") and the initialization of the object parameter ([[dcl.fct]](dcl.fct "9.3.4.6 Functions")) of any applicable subscript operator function ([[over.sub]](over.sub "12.4.5 Subscripting")) is sequenced before each expression in the [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]") and also before any default argument ([[dcl.fct.default]](dcl.fct.default "9.3.4.7 Default arguments"))[.](#expr.sub-1.sentence-2) The initialization of a non-object parameter of a subscript operator function S, including every associated value computation and side effect, is indeterminately sequenced with respect to that of any other non-object parameter of S[.](#expr.sub-1.sentence-3) [2](#expr.sub-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3719) With the built-in subscript operator, an [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]") shall be present, consisting of a single [*assignment-expression*](expr.assign#nt:assignment-expression "7.6.19 Assignment and compound assignment operators [expr.assign]")[.](#expr.sub-2.sentence-1) One of the expressions shall be a glvalue of type “array ofT” or a prvalue of type “pointer to T” and the other shall be a prvalue of unscoped enumeration or integral type[.](#expr.sub-2.sentence-2) The result is of type “T”[.](#expr.sub-2.sentence-3) The type “T” shall be a completely-defined object type[.](#expr.sub-2.sentence-4)[48](#footnote-48 "This is true even if the subscript operator is used in the following common idiom: &x[0].") The expression E1[E2] is identical (by definition) to*((E1)+(E2)), except that in the case of an array operand, the result is an lvalue if that operand is an lvalue and an xvalue otherwise[.](#expr.sub-2.sentence-5) [3](#expr.sub-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3739) [*Note [1](#expr.sub-note-1)*: Despite its asymmetric appearance, subscripting is a commutative operation except for sequencing[.](#expr.sub-3.sentence-1) See [[expr.unary]](expr.unary "7.6.2 Unary expressions") and [[expr.add]](expr.add "7.6.6 Additive operators") for details of * and+ and [[dcl.array]](dcl.array "9.3.4.5 Arrays") for details of array types[.](#expr.sub-3.sentence-2) — *end note*] [48)](#footnote-48)[48)](#footnoteref-48) This is true even if the subscript operator is used in the following common idiom:&x[0][.](#footnote-48.sentence-1) #### [7.6.1.3](#expr.call) Function call [[expr.call]](expr.call) [1](#expr.call-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3749) A function call is a postfix expression followed by parentheses containing a possibly empty, comma-separated list of[*initializer-clause*](dcl.init.general#nt:initializer-clause "9.5.1 General [dcl.init.general]")*s* which constitute the arguments to the function[.](#expr.call-1.sentence-1) [*Note [1](#expr.call-note-1)*: If the postfix expression is a function or member function name, the appropriate function and the validity of the call are determined according to the rules in [[over.match]](over.match "12.2 Overload resolution")[.](#expr.call-1.sentence-2) — *end note*] The postfix expression shall have function type or function pointer type[.](#expr.call-1.sentence-3) For a call to a non-member function or to a static member function, the postfix expression shall be either an lvalue that refers to a function (in which case the function-to-pointer standard conversion ([[conv.func]](conv.func "7.3.4 Function-to-pointer conversion")) is suppressed on the postfix expression), or a prvalue of function pointer type[.](#expr.call-1.sentence-4) [2](#expr.call-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3770) If the selected function is non-virtual, or if the [*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]") in the class member access expression is a [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3 Qualified names [expr.prim.id.qual]"), that function is called[.](#expr.call-2.sentence-1) Otherwise, its [final overrider](class.virtual#def:final_overrider "11.7.3 Virtual functions [class.virtual]") in the dynamic type of the object expression is called; such a call is referred to as a[*virtual function call*](#def:function,virtual_function_call "7.6.1.3 Function call [expr.call]")[.](#expr.call-2.sentence-2) [*Note [2](#expr.call-note-2)*: The dynamic type is the type of the object referred to by the current value of the object expression[.](#expr.call-2.sentence-3) [[class.cdtor]](class.cdtor "11.9.5 Construction and destruction") describes the behavior of virtual function calls when the object expression refers to an object under construction or destruction[.](#expr.call-2.sentence-4) — *end note*] [3](#expr.call-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3785) [*Note [3](#expr.call-note-3)*: If a function or member function name is used, and [name lookup](basic.lookup "6.5 Name lookup [basic.lookup]") does not find a declaration of that name, the program is ill-formed[.](#expr.call-3.sentence-1) No function is implicitly declared by such a call[.](#expr.call-3.sentence-2) — *end note*] [4](#expr.call-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3793) If the [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") names a destructor or pseudo-destructor ([[expr.prim.id.dtor]](expr.prim.id.dtor "7.5.5.5 Destruction")), the type of the function call expression is void; otherwise, the type of the function call expression is the return type of the statically chosen function (i.e., ignoring the virtual keyword), even if the type of the function actually called is different[.](#expr.call-4.sentence-1) If the [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") names a pseudo-destructor (in which case the [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") is a possibly-parenthesized class member access), the function call destroys the object of scalar type denoted by the object expression of the class member access ([[expr.ref]](#expr.ref "7.6.1.5 Class member access"), [[basic.life]](basic.life "6.8.4 Lifetime"))[.](#expr.call-4.sentence-2) [5](#expr.call-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3809) A type Tcall is[*call-compatible*](#def:call-compatible "7.6.1.3 Function call [expr.call]") with a function type Tfunc if Tcall is the same type as Tfunc or if the type “pointer to Tfunc” can be converted to type “pointer to Tcall” via a function pointer conversion ([[conv.fctptr]](conv.fctptr "7.3.14 Function pointer conversions"))[.](#expr.call-5.sentence-1) Calling a function through an expression whose function type is not call-compatible with the type of the called function's definition results in undefined behavior[.](#expr.call-5.sentence-2) [*Note [4](#expr.call-note-4)*: This requirement allows the case when the expression has the type of a potentially-throwing function, but the called function has a non-throwing exception specification, and the function types are otherwise the same[.](#expr.call-5.sentence-3) — *end note*] [6](#expr.call-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3829) When a function is called, each parameter ([[dcl.fct]](dcl.fct "9.3.4.6 Functions")) is initialized ([[dcl.init]](dcl.init "9.5 Initializers"), [[class.copy.ctor]](class.copy.ctor "11.4.5.3 Copy/move constructors")) with its corresponding argument, and each precondition assertion of the function is evaluated ([[dcl.contract.func]](dcl.contract.func "9.4.1 General"))[.](#expr.call-6.sentence-1) If the function is an explicit object member function and there is an implied object argument ([[over.call.func]](over.call.func "12.2.2.2.2 Call to designated function")), the list of provided arguments is preceded by the implied object argument for the purposes of this correspondence[.](#expr.call-6.sentence-2) If there is no corresponding argument, the default argument for the parameter is used[.](#expr.call-6.sentence-3) [*Example [1](#expr.call-example-1)*: template int f(int n = 0, T ...t);int x = f(); // error: no argument for second function parameter — *end example*] If the function is an implicit object member function, the object expression of the class member access shall be a glvalue and the implicit object parameter of the function ([[over.match.funcs]](over.match.funcs "12.2.2 Candidate functions and argument lists")) is initialized with that glvalue, converted as if by an [explicit type conversion](expr.cast "7.6.3 Explicit type conversion (cast notation) [expr.cast]")[.](#expr.call-6.sentence-4) [*Note [5](#expr.call-note-5)*: There is no access or ambiguity checking on this conversion; the access checking and disambiguation are done as part of the (possibly implicit) class member access operator[.](#expr.call-6.sentence-5) See [[class.member.lookup]](class.member.lookup "6.5.2 Member name lookup"), [[class.access.base]](class.access.base "11.8.3 Accessibility of base classes and base class members"), and [[expr.ref]](#expr.ref "7.6.1.5 Class member access")[.](#expr.call-6.sentence-6) — *end note*] When a function is called, the type of any parameter shall not be a class type that is either incomplete or abstract[.](#expr.call-6.sentence-7) [*Note [6](#expr.call-note-6)*: This still allows a parameter to be a pointer or reference to such a type[.](#expr.call-6.sentence-8) However, it prevents a passed-by-value parameter to have an incomplete or abstract class type[.](#expr.call-6.sentence-9) — *end note*] It is implementation-defined whether a parameter is destroyed when the function in which it is defined exits ([[stmt.return]](stmt.return "8.8.4 The return statement"), [[except.ctor]](except.ctor "14.3 Stack unwinding"), [[expr.await]](expr.await "7.6.2.4 Await")) or at the end of the enclosing full-expression; parameters are always destroyed in the reverse order of their construction[.](#expr.call-6.sentence-10) The initialization and destruction of each parameter occurs within the context of the full-expression ([[intro.execution]](intro.execution "6.10.1 Sequential execution")) where the function call appears[.](#expr.call-6.sentence-11) [*Example [2](#expr.call-example-2)*: The access ([[class.access.general]](class.access.general "11.8.1 General")) of the constructor, conversion functions, or destructor is checked at the point of call[.](#expr.call-6.sentence-12) If a constructor or destructor for a function parameter throws an exception, any [*function-try-block*](except.pre#nt:function-try-block "14.1 Preamble [except.pre]") ([[except.pre]](except.pre "14.1 Preamble")) of the called function with a handler that can handle the exception is not considered[.](#expr.call-6.sentence-13) — *end example*] [7](#expr.call-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3890) The [*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]") is sequenced before each [*expression*](expr.comma#nt:expression "7.6.20 Comma operator [expr.comma]") in the [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]") and any default argument[.](#expr.call-7.sentence-1) The initialization of a parameter or, if the implementation introduces any temporary objects to hold the values of function parameters ([[class.temporary]](class.temporary "6.8.7 Temporary objects")), the initialization of those temporaries, including every associated value computation and side effect, is indeterminately sequenced with respect to that of any other parameter[.](#expr.call-7.sentence-2) These evaluations are sequenced before the evaluation of the precondition assertions of the function, which are evaluated in sequence ([[dcl.contract.func]](dcl.contract.func "9.4.1 General"))[.](#expr.call-7.sentence-3) For any temporaries introduced to hold the values of function parameters, the initialization of the parameter objects from those temporaries is indeterminately sequenced with respect to the evaluation of each precondition assertion[.](#expr.call-7.sentence-4) [*Note [7](#expr.call-note-7)*: All side effects of argument evaluations are sequenced before the function is entered (see [[intro.execution]](intro.execution "6.10.1 Sequential execution"))[.](#expr.call-7.sentence-5) — *end note*] [*Example [3](#expr.call-example-3)*: void f() { std::string s = "but I have heard it works even if you don't believe in it"; s.replace(0, 4, "").replace(s.find("even"), 4, "only").replace(s.find(" don't"), 6, ""); assert(s == "I have heard it works only if you believe in it"); // OK} — *end example*] [*Note [8](#expr.call-note-8)*: If an operator function is invoked using operator notation, argument evaluation is sequenced as specified for the built-in operator; see [[over.match.oper]](over.match.oper "12.2.2.3 Operators in expressions")[.](#expr.call-7.sentence-6) — *end note*] [*Example [4](#expr.call-example-4)*: struct S { S(int);};int operator<<(S, int);int i, j;int x = S(i=1) << (i=2);int y = operator<<(S(j=1), j=2); After performing the initializations, the value of i is 2 (see [[expr.shift]](expr.shift "7.6.7 Shift operators")), but it is unspecified whether the value of j is 1 or 2[.](#expr.call-7.sentence-7) — *end example*] [8](#expr.call-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3948) The result of a function call is the result of the possibly-converted operand of the return statement ([[stmt.return]](stmt.return "8.8.4 The return statement")) that transferred control out of the called function (if any), except in a virtual function call if the return type of the final overrider is different from the return type of the statically chosen function, the value returned from the final overrider is converted to the return type of the statically chosen function[.](#expr.call-8.sentence-1) [9](#expr.call-9) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3957) When the called function exits normally ([[stmt.return]](stmt.return "8.8.4 The return statement"), [[expr.await]](expr.await "7.6.2.4 Await")), all postcondition assertions of the function are evaluated in sequence ([[dcl.contract.func]](dcl.contract.func "9.4.1 General"))[.](#expr.call-9.sentence-1) If the implementation introduces any temporary objects to hold the result value as specified in [[class.temporary]](class.temporary "6.8.7 Temporary objects"), the evaluation of each postcondition assertion is indeterminately sequenced with respect to the initialization of any of those temporaries or the result object[.](#expr.call-9.sentence-2) These evaluations, in turn, are sequenced before the destruction of any function parameters[.](#expr.call-9.sentence-3) [10](#expr.call-10) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3969) [*Note [9](#expr.call-note-9)*: A function can change the values of its non-const parameters, but these changes cannot affect the values of the arguments except where a parameter is of a reference type ([[dcl.ref]](dcl.ref "9.3.4.3 References")); if the reference is to a const-qualified type, const_cast needs to be used to cast away the constness in order to modify the argument's value[.](#expr.call-10.sentence-1) Where a parameter is of const reference type a temporary object is introduced if needed ([[dcl.type]](dcl.type "9.2.9 Type specifiers"), [[lex.literal]](lex.literal "5.13 Literals"), [[lex.string]](lex.string "5.13.5 String literals"), [[dcl.array]](dcl.array "9.3.4.5 Arrays"), [[class.temporary]](class.temporary "6.8.7 Temporary objects"))[.](#expr.call-10.sentence-2) In addition, it is possible to modify the values of non-constant objects through pointer parameters[.](#expr.call-10.sentence-3) — *end note*] [11](#expr.call-11) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L3989) A function can be declared to accept fewer arguments (by declaring [default arguments](dcl.fct.default "9.3.4.7 Default arguments [dcl.fct.default]")) or more arguments (by using the ellipsis,..., or a function parameter pack ([[dcl.fct]](dcl.fct "9.3.4.6 Functions"))) than the number of parameters in the [function definition](dcl.fct.def "9.6 Function definitions [dcl.fct.def]")[.](#expr.call-11.sentence-1) [*Note [10](#expr.call-note-10)*: This implies that, except where the ellipsis (...) or a function parameter pack is used, a parameter is available for each argument[.](#expr.call-11.sentence-2) — *end note*] [12](#expr.call-12) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4001) When there is no parameter for a given argument, the argument is passed in such a way that the receiving function can obtain the value of the argument by invoking va_arg ([[support.runtime]](support.runtime "17.14 Other runtime support"))[.](#expr.call-12.sentence-1) [*Note [11](#expr.call-note-11)*: This paragraph does not apply to arguments passed to a function parameter pack[.](#expr.call-12.sentence-2) Function parameter packs are expanded during template instantiation ([[temp.variadic]](temp.variadic "13.7.4 Variadic templates")), thus each such argument has a corresponding parameter when a function template specialization is actually called[.](#expr.call-12.sentence-3) — *end note*] The[lvalue-to-rvalue](conv.lval "7.3.2 Lvalue-to-rvalue conversion [conv.lval]"), [array-to-pointer](conv.array "7.3.3 Array-to-pointer conversion [conv.array]"), and [function-to-pointer](conv.func "7.3.4 Function-to-pointer conversion [conv.func]") standard conversions are performed on the argument expression[.](#expr.call-12.sentence-4) An argument that has type cv std​::​nullptr_t is converted to type void* ([[conv.ptr]](conv.ptr "7.3.12 Pointer conversions"))[.](#expr.call-12.sentence-5) After these conversions, if the argument does not have arithmetic, enumeration, pointer, pointer-to-member, or class type, the program is ill-formed[.](#expr.call-12.sentence-6) Passing a potentially-evaluated argument of a scoped enumeration type ([[dcl.enum]](dcl.enum "9.8.1 Enumeration declarations")) or of a class type ([[class]](class "11 Classes")) having an eligible non-trivial copy constructor ([[special]](special "11.4.4 Special member functions"), [[class.copy.ctor]](class.copy.ctor "11.4.5.3 Copy/move constructors")), an eligible non-trivial move constructor, or a non-trivial destructor ([[class.dtor]](class.dtor "11.4.7 Destructors")), with no corresponding parameter, is conditionally-supported withimplementation-defined semantics[.](#expr.call-12.sentence-7) If the argument has integral or enumeration type that is subject to the [integral promotions](conv.prom "7.3.7 Integral promotions [conv.prom]"), or a floating-point type that is subject to the[floating-point promotion](conv.fpprom "7.3.8 Floating-point promotion [conv.fpprom]"), the value of the argument is converted to the promoted type before the call[.](#expr.call-12.sentence-8) These promotions are referred to as the [*default argument promotions*](#def:promotion,default_argument_promotion "7.6.1.3 Function call [expr.call]")[.](#expr.call-12.sentence-9) [13](#expr.call-13) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4035) Recursive calls are permitted, except to the [main function](basic.start.main "6.10.3.1 main function [basic.start.main]")[.](#expr.call-13.sentence-1) [14](#expr.call-14) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4040) A function call is an lvalue if the result type is an lvalue reference type or an rvalue reference to function type, an xvalue if the result type is an rvalue reference to object type, and a prvalue otherwise[.](#expr.call-14.sentence-1) If it is a non-void prvalue, the type of the function call expression shall be complete, except as specified in [[dcl.type.decltype]](dcl.type.decltype "9.2.9.6 Decltype specifiers")[.](#expr.call-14.sentence-2) #### [7.6.1.4](#expr.type.conv) Explicit type conversion (functional notation) [[expr.type.conv]](expr.type.conv) [1](#expr.type.conv-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4051) A [](dcl.type.simple "9.2.9.3 Simple type specifiers [dcl.type.simple]")[*simple-type-specifier*](dcl.type.simple#nt:simple-type-specifier "9.2.9.3 Simple type specifiers [dcl.type.simple]") or[](temp.res "13.8 Name resolution [temp.res]")[*typename-specifier*](temp.res.general#nt:typename-specifier "13.8.1 General [temp.res.general]") followed by a parenthesized optional [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]") or by a [*braced-init-list*](dcl.init.general#nt:braced-init-list "9.5.1 General [dcl.init.general]") (the initializer) constructs a value of the specified type given the initializer[.](#expr.type.conv-1.sentence-1) If the type is a placeholder for a deduced class type, it is replaced by the return type of the function selected by overload resolution for [class template deduction](over.match.class.deduct "12.2.2.9 Class template argument deduction [over.match.class.deduct]") for the remainder of this subclause[.](#expr.type.conv-1.sentence-2) Otherwise, if the type contains a placeholder type, it is replaced by the type determined by placeholder type deduction ([[dcl.type.auto.deduct]](dcl.type.auto.deduct "9.2.9.7.2 Placeholder type deduction"))[.](#expr.type.conv-1.sentence-3) Let T denote the resulting type[.](#expr.type.conv-1.sentence-4) Then: - [(1.1)](#expr.type.conv-1.1) If the initializer is a parenthesized single expression, the type conversion expression is equivalent to the corresponding cast expression ([[expr.cast]](expr.cast "7.6.3 Explicit type conversion (cast notation)"))[.](#expr.type.conv-1.1.sentence-1) - [(1.2)](#expr.type.conv-1.2) Otherwise, if T is cv void, the initializer shall be () or {} (after pack expansion, if any), and the expression is a prvalue of type void that performs no initialization[.](#expr.type.conv-1.2.sentence-1) - [(1.3)](#expr.type.conv-1.3) Otherwise, if T is a reference type, the expression has the same effect as direct-initializing an invented variable t of type T from the initializer and then using t as the result of the expression; the result is an lvalue ifT is an lvalue reference type or an rvalue reference to function type and an xvalue otherwise[.](#expr.type.conv-1.3.sentence-1) - [(1.4)](#expr.type.conv-1.4) Otherwise, the expression is a prvalue of type T whose result object is direct-initialized ([[dcl.init]](dcl.init "9.5 Initializers")) with the initializer[.](#expr.type.conv-1.4.sentence-1) If the initializer is a parenthesized optional [*expression-list*](#nt:expression-list "7.6.1.1 General [expr.post.general]"),T shall not be an array type[.](#expr.type.conv-1.sentence-6) [*Example [1](#expr.type.conv-example-1)*: struct A {};void f(A&); // #1void f(A&&); // #2 A& g();void h() { f(g()); // calls #1 f(A(g())); // calls #2 with a temporary object f(auto(g())); // calls #2 with a temporary object} — *end example*] #### [7.6.1.5](#expr.ref) Class member access [[expr.ref]](expr.ref) [1](#expr.ref-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4128) A postfix expression followed by a dot . or an arrow ->, optionally followed by the keywordtemplate, and then followed by an[*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]") or a [*splice-expression*](expr.prim.splice#nt:splice-expression "7.5.9 Expression splicing [expr.prim.splice]"), is a postfix expression[.](#expr.ref-1.sentence-1) [*Note [1](#expr.ref-note-1)*: If the keyword template is used and followed by an [*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]"), the unqualified name is considered to refer to a template ([[temp.names]](temp.names "13.3 Names of template specializations"))[.](#expr.ref-1.sentence-2) If a [*simple-template-id*](temp.names#nt:simple-template-id "13.3 Names of template specializations [temp.names]") results and is followed by a ​::​, the [*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]") is a [*qualified-id*](expr.prim.id.qual#nt:qualified-id "7.5.5.3 Qualified names [expr.prim.id.qual]")[.](#expr.ref-1.sentence-3) — *end note*] [2](#expr.ref-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4153) For a dot that is followed by an expression that designates a static member or an enumerator, the first expression is a discarded-value expression ([[expr.context]](expr.context "7.2.3 Context dependence")); if the expression after the dot designates a non-static data member, the first expression shall be a glvalue[.](#expr.ref-2.sentence-1) A postfix expression that is followed by an arrow shall be a prvalue having pointer type[.](#expr.ref-2.sentence-2) The expression E1->E2 is converted to the equivalent form (*(E1)).E2; the remainder of[[expr.ref]](#expr.ref "7.6.1.5 Class member access") will address only the form using a dot[.](#expr.ref-2.sentence-3)[49](#footnote-49 "Note that (*(E1)) is an lvalue.") [3](#expr.ref-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4170) The postfix expression before the dot is evaluated;[50](#footnote-50 "If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the id-expression denotes a static member.") the result of that evaluation, together with the [*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]") or [*splice-expression*](expr.prim.splice#nt:splice-expression "7.5.9 Expression splicing [expr.prim.splice]"), determines the result of the entire postfix expression[.](#expr.ref-3.sentence-1) [4](#expr.ref-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4184) Abbreviating[*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]").[*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]") or[*postfix-expression*](#nt:postfix-expression "7.6.1.1 General [expr.post.general]").[*splice-expression*](expr.prim.splice#nt:splice-expression "7.5.9 Expression splicing [expr.prim.splice]") as E1.E2, E1 is called the [*object expression*](expr.mptr.oper#def:object_expression "7.6.4 Pointer-to-member operators [expr.mptr.oper]")[.](#expr.ref-4.sentence-1) If the object expression is of scalar type,E2 shall name the pseudo-destructor of that same type (ignoring cv-qualifications) andE1.E2 is a prvalue of type “function of () returning void”[.](#expr.ref-4.sentence-2) [*Note [2](#expr.ref-note-2)*: This value can only be used for a notional function call ([[expr.prim.id.dtor]](expr.prim.id.dtor "7.5.5.5 Destruction"))[.](#expr.ref-4.sentence-3) — *end note*] [5](#expr.ref-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4198) Otherwise, the object expression shall be of class type[.](#expr.ref-5.sentence-1) The class type shall be complete unless the class member access appears in the definition of that class[.](#expr.ref-5.sentence-2) [*Note [3](#expr.ref-note-3)*: The program is ill-formed if the result differs from that when the class is complete ([[class.member.lookup]](class.member.lookup "6.5.2 Member name lookup"))[.](#expr.ref-5.sentence-3) — *end note*] [*Note [4](#expr.ref-note-4)*: [[basic.lookup.qual]](basic.lookup.qual "6.5.5 Qualified name lookup") describes how names are looked up after the. and -> operators[.](#expr.ref-5.sentence-4) — *end note*] [6](#expr.ref-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4211) If E2 is a [*splice-expression*](expr.prim.splice#nt:splice-expression "7.5.9 Expression splicing [expr.prim.splice]"), then let T1 be the type of E1[.](#expr.ref-6.sentence-1) E2 shall designate either a member of T1 or a direct base class relationship (T1, B)[.](#expr.ref-6.sentence-2) [7](#expr.ref-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4218) If E2 designates a bit-field, E1.E2 is a bit-field[.](#expr.ref-7.sentence-1) The type and value category of E1.E2 are determined as follows[.](#expr.ref-7.sentence-2) In the remainder of [[expr.ref]](#expr.ref "7.6.1.5 Class member access"), *cq* represents eitherconst or the absence of const and *vq* represents either volatile or the absence of volatile[.](#expr.ref-7.sentence-3) *cv* represents an arbitrary set of cv-qualifiers, as defined in [[basic.type.qualifier]](basic.type.qualifier "6.9.5 CV-qualifiers")[.](#expr.ref-7.sentence-4) [8](#expr.ref-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4227) If E2 designates an entity that is declared to have type “reference to T”, thenE1.E2 is an lvalue of type T[.](#expr.ref-8.sentence-1) In that case, if E2 designates a static data member,E1.E2 designates the object or function to which the reference is bound, otherwise E1.E2 designates the object or function to which the corresponding reference member of E1 is bound[.](#expr.ref-8.sentence-2) Otherwise, one of the following rules applies[.](#expr.ref-8.sentence-3) - [(8.1)](#expr.ref-8.1) If E2 designates a static data member and the type of E2 is T, then E1.E2 is an lvalue; the expression designates the named member of the class[.](#expr.ref-8.1.sentence-1) The type of E1.E2 is T[.](#expr.ref-8.1.sentence-2) - [(8.2)](#expr.ref-8.2) Otherwise, if E2 designates a non-static data member and the type ofE1 is “*cq1 vq1* X”, and the type of E2 is “*cq2 vq2* T”, the expression designates the corresponding member subobject of the object designated by E1[.](#expr.ref-8.2.sentence-1) If E1 is an lvalue, then E1.E2 is an lvalue; otherwise E1.E2 is an xvalue[.](#expr.ref-8.2.sentence-2) Let the notation *vq12* stand for the “union” of*vq1* and *vq2*; that is, if *vq1* or *vq2* is volatile, then *vq12* is volatile[.](#expr.ref-8.2.sentence-3) Similarly, let the notation *cq12* stand for the “union” of *cq1* and *cq2*; that is, if *cq1* or *cq2* isconst, then *cq12* is const[.](#expr.ref-8.2.sentence-4) If the entity designated by E2 is declared to be a mutable member, then the type of E1.E2 is “*vq12* T”[.](#expr.ref-8.2.sentence-5) If the entity designated by E2 is not declared to be a mutable member, then the type of E1.E2 is “*cq12* *vq12* T”[.](#expr.ref-8.2.sentence-6) - [(8.3)](#expr.ref-8.3) Otherwise, if E2 denotes an overload set, the expression shall be the (possibly-parenthesized) left-hand operand of a member function call ([[expr.call]](#expr.call "7.6.1.3 Function call")), and function overload resolution ([[over.match]](over.match "12.2 Overload resolution")) is used to select the function to which E2 refers[.](#expr.ref-8.3.sentence-1) The type of E1.E2 is the type of E2 and E1.E2 refers to the function referred to by E2[.](#expr.ref-8.3.sentence-2) * [(8.3.1)](#expr.ref-8.3.1) If E2 refers to a static member function,E1.E2 is an lvalue[.](#expr.ref-8.3.1.sentence-1) * [(8.3.2)](#expr.ref-8.3.2) Otherwise (when E2 refers to a non-static member function),E1.E2 is a prvalue[.](#expr.ref-8.3.2.sentence-1) [*Note [5](#expr.ref-note-5)*: Any redundant set of parentheses surrounding the expression is ignored ([[expr.prim.paren]](expr.prim.paren "7.5.4 Parentheses"))[.](#expr.ref-8.3.2.sentence-2) — *end note*] - [(8.4)](#expr.ref-8.4) Otherwise, if E2 designates a nested type, the expression E1.E2 is ill-formed[.](#expr.ref-8.4.sentence-1) - [(8.5)](#expr.ref-8.5) Otherwise, if E2 designates a member enumerator and the type of E2 is T, the expression E1.E2 is a prvalue of type T whose value is the value of the enumerator[.](#expr.ref-8.5.sentence-1) - [(8.6)](#expr.ref-8.6) Otherwise, if E2 designates a direct base class relationship (D,B) and the type of E1 is cv T, the expression designates the direct base class subobject of type B of the object designated by E1[.](#expr.ref-8.6.sentence-1) If E1 is an lvalue, then E1.E2 is an lvalue; otherwise, E1.E2 is an xvalue[.](#expr.ref-8.6.sentence-2) The type of E1.E2 is “cv B”[.](#expr.ref-8.6.sentence-3) [*Note [6](#expr.ref-note-6)*: This can only occur in an expression of the form e1.[:e2:][.](#expr.ref-8.6.sentence-4) — *end note*] [*Example [1](#expr.ref-example-1)*: struct B {int b;};struct C : B {int get() const { return b; }};struct D : B, C { }; constexpr int f() { D d = {1, {}}; // b unambiguously refers to the direct base class of type B,// not the indirect base class of type B B& b = d.[: std::meta::bases_of(^^D, std::meta::access_context::current())[0] :]; b.b += 10; return 10 * b.b + d.get();}static_assert(f() == 110); — *end example*] - [(8.7)](#expr.ref-8.7) Otherwise, the program is ill-formed[.](#expr.ref-8.7.sentence-1) [9](#expr.ref-9) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4332) If E2 designates a non-static member (possibly after overload resolution), the program is ill-formed if the class of which E2 designates a direct member is an ambiguous base ([[class.member.lookup]](class.member.lookup "6.5.2 Member name lookup")) of the designating class ([[class.access.base]](class.access.base "11.8.3 Accessibility of base classes and base class members")) of E2[.](#expr.ref-9.sentence-1) [*Note [7](#expr.ref-note-7)*: The program is also ill-formed if the naming class is an ambiguous base of the class type of the object expression; see [[class.access.base]](class.access.base "11.8.3 Accessibility of base classes and base class members")[.](#expr.ref-9.sentence-2) — *end note*] [10](#expr.ref-10) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4343) If E2 designates a non-static member (possibly after overload resolution) and the result of E1 is an object whose type is not similar ([[conv.qual]](conv.qual "7.3.6 Qualification conversions")) to the type of E1, the behavior is undefined[.](#expr.ref-10.sentence-1) [*Example [2](#expr.ref-example-2)*: struct A { int i; };struct B { int j; };struct D : A, B {};void f() { D d; static_cast(d).j; // OK, object expression designates the B subobject of dreinterpret_cast(d).j; // undefined behavior} — *end example*] [49)](#footnote-49)[49)](#footnoteref-49) Note that(*(E1)) is an lvalue[.](#footnote-49.sentence-1) [50)](#footnote-50)[50)](#footnoteref-50) If the class member access expression is evaluated, the subexpression evaluation happens even if the result is unnecessary to determine the value of the entire postfix expression, for example if the[*id-expression*](expr.prim.id.general#nt:id-expression "7.5.5.1 General [expr.prim.id.general]") denotes a static member[.](#footnote-50.sentence-1) #### [7.6.1.6](#incr) Increment and decrement [[expr.post.incr]](expr.post.incr) [1](#incr-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4364) The value of a postfix ++ expression is the value obtained by applying the lvalue-to-rvalue conversion ([[conv.lval]](conv.lval "7.3.2 Lvalue-to-rvalue conversion")) to its operand[.](#incr-1.sentence-1) [*Note [1](#incr-note-1)*: The value obtained is a copy of the original value[.](#incr-1.sentence-2) — *end note*] The operand shall be a modifiable lvalue[.](#incr-1.sentence-3) The type of the operand shall be an arithmetic type other than cv bool, or a pointer to a complete object type[.](#incr-1.sentence-4) An operand with volatile-qualified type is deprecated; see [[depr.volatile.type]](depr.volatile.type "D.4 Deprecated volatile types")[.](#incr-1.sentence-5) The value of the operand object is modified ([[defns.access]](defns.access "3.1 access")) as if it were the operand of the prefix ++ operator ([[expr.pre.incr]](expr.pre.incr "7.6.2.3 Increment and decrement"))[.](#incr-1.sentence-6) Thevalue computation of the ++ expression is sequenced before the modification of the operand object[.](#incr-1.sentence-7) With respect to an indeterminately-sequenced function call, the operation of postfix++ is a single evaluation[.](#incr-1.sentence-8) [*Note [2](#incr-note-2)*: Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect associated with any single postfix ++ operator[.](#incr-1.sentence-9) — *end note*] The result is a prvalue[.](#incr-1.sentence-10) The type of the result is the cv-unqualified version of the type of the operand[.](#incr-1.sentence-11) [2](#incr-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4396) The operand of postfix -- is decremented analogously to the postfix ++ operator[.](#incr-2.sentence-1) [*Note [3](#incr-note-3)*: For prefix increment and decrement, see [[expr.pre.incr]](expr.pre.incr "7.6.2.3 Increment and decrement")[.](#incr-2.sentence-2) — *end note*] #### [7.6.1.7](#expr.dynamic.cast) Dynamic cast [[expr.dynamic.cast]](expr.dynamic.cast) [1](#expr.dynamic.cast-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4409) The result of the expression dynamic_cast(v) is the result of converting the expression v to type T[.](#expr.dynamic.cast-1.sentence-1) T shall be a pointer or reference to a complete class type, or “pointer to cv void”[.](#expr.dynamic.cast-1.sentence-2) The dynamic_cast operator shall not cast away constness ([[expr.const.cast]](#expr.const.cast "7.6.1.11 Const cast"))[.](#expr.dynamic.cast-1.sentence-3) [2](#expr.dynamic.cast-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4419) If T is a pointer type, v shall be a prvalue of a pointer to complete class type, and the result is a prvalue of typeT[.](#expr.dynamic.cast-2.sentence-1) If T is an lvalue reference type, v shall be an lvalue of a complete class type, and the result is an lvalue of the type referred to by T[.](#expr.dynamic.cast-2.sentence-2) If T is an rvalue reference type,v shall be a glvalue having a complete class type, and the result is an xvalue of the type referred to by T[.](#expr.dynamic.cast-2.sentence-3) [3](#expr.dynamic.cast-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4428) If the type of v is the same as T (ignoring cv-qualifications), the result isv (converted if necessary)[.](#expr.dynamic.cast-3.sentence-1) [4](#expr.dynamic.cast-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4433) If T is “pointer to *cv1* B” and v has type “pointer to *cv2* D” such that B is a base class of D, the result is a pointer to the unique B subobject of the D object pointed to by v, or a null pointer value if v is a null pointer value[.](#expr.dynamic.cast-4.sentence-1) Similarly, ifT is “reference to *cv1* B” and v has type *cv2* D such that B is a base class ofD, the result is the unique B subobject of the D object referred to by v[.](#expr.dynamic.cast-4.sentence-2)[51](#footnote-51 "The most derived object ([intro.object]) pointed or referred to by v can contain other B objects as base classes, but these are ignored.") In both the pointer and reference cases, the program is ill-formed if B is an inaccessible or ambiguous base class of D[.](#expr.dynamic.cast-4.sentence-3) [*Example [1](#expr.dynamic.cast-example-1)*: struct B { };struct D : B { };void foo(D* dp) { B* bp = dynamic_cast(dp); // equivalent to B* bp = dp;} — *end example*] [5](#expr.dynamic.cast-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4463) Otherwise, v shall be a pointer to or a glvalue of a[polymorphic type](class.virtual#def:class,polymorphic "11.7.3 Virtual functions [class.virtual]")[.](#expr.dynamic.cast-5.sentence-1) [6](#expr.dynamic.cast-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4467) If v is a null pointer value, the result is a null pointer value[.](#expr.dynamic.cast-6.sentence-1) [7](#expr.dynamic.cast-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4470) If v has type “pointer to cv U” andv does not point to an object whose type is similar ([[conv.qual]](conv.qual "7.3.6 Qualification conversions")) to U and that is within its lifetime or within its period of construction or destruction ([[class.cdtor]](class.cdtor "11.9.5 Construction and destruction")), the behavior is undefined[.](#expr.dynamic.cast-7.sentence-1) If v is a glvalue of type U andv does not refer to an object whose type is similar to U and that is within its lifetime or within its period of construction or destruction, the behavior is undefined[.](#expr.dynamic.cast-7.sentence-2) [8](#expr.dynamic.cast-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4486) If T is “pointer to cv void”, then the result is a pointer to the most derived object pointed to by v[.](#expr.dynamic.cast-8.sentence-1) Otherwise, a runtime check is applied to see if the object pointed or referred to by v can be converted to the type pointed or referred to by T[.](#expr.dynamic.cast-8.sentence-2) [9](#expr.dynamic.cast-9) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4493) Let C be the class type to which T points or refers[.](#expr.dynamic.cast-9.sentence-1) The runtime check logically executes as follows: - [(9.1)](#expr.dynamic.cast-9.1) If, in the most derived object pointed (referred) to by v,v points (refers) to a public base class subobject of aC object, and if only one object of type C is derived from the subobject pointed (referred) to by v, the result points (refers) to that C object[.](#expr.dynamic.cast-9.1.sentence-1) - [(9.2)](#expr.dynamic.cast-9.2) Otherwise, if v points (refers) to a public base class subobject of the most derived object, and the type of the most derived object has a base class, of type C, that is unambiguous and public, the result points (refers) to theC subobject of the most derived object[.](#expr.dynamic.cast-9.2.sentence-1) - [(9.3)](#expr.dynamic.cast-9.3) Otherwise, the runtime check [*fails*](#def:fails)[.](#expr.dynamic.cast-9.3.sentence-1) [10](#expr.dynamic.cast-10) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4513) The value of a failed cast to pointer type is the null pointer value of the required result type[.](#expr.dynamic.cast-10.sentence-1) A failed cast to reference type [throws an exception](except.throw "14.2 Throwing an exception [except.throw]") of a type that would match a[handler](except.handle "14.4 Handling an exception [except.handle]") of type [std​::​bad_cast](bad.cast "17.7.4 Class bad_­cast [bad.cast]")[.](#expr.dynamic.cast-10.sentence-2) [*Example [2](#expr.dynamic.cast-example-2)*: class A { virtual void f(); };class B { virtual void g(); };class D : public virtual A, private B { };void g() { D d; B* bp = (B*)&d; // cast needed to break protection A* ap = &d; // public derivation, no cast needed D& dr = dynamic_cast(*bp); // fails ap = dynamic_cast(bp); // fails bp = dynamic_cast(ap); // fails ap = dynamic_cast(&d); // succeeds bp = dynamic_cast(&d); // ill-formed (not a runtime check)}class E : public D, public B { };class F : public E, public D { };void h() { F f; A* ap = &f; // succeeds: finds unique A D* dp = dynamic_cast(ap); // fails: yields null; f has two D subobjects E* ep = (E*)ap; // error: cast from virtual base E* ep1 = dynamic_cast(ap); // succeeds} — *end example*] [*Note [1](#expr.dynamic.cast-note-1)*: Subclause [[class.cdtor]](class.cdtor "11.9.5 Construction and destruction") describes the behavior of a dynamic_cast applied to an object under construction or destruction[.](#expr.dynamic.cast-10.sentence-3) — *end note*] [51)](#footnote-51)[51)](#footnoteref-51) The most derived object ([[intro.object]](intro.object "6.8.2 Object model")) pointed or referred to byv can contain other B objects as base classes, but these are ignored[.](#footnote-51.sentence-1) #### [7.6.1.8](#expr.typeid) Type identification [[expr.typeid]](expr.typeid) [1](#expr.typeid-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4555) The result of a typeid expression is an lvalue of static typeconst std​::​type_info ([[type.info]](type.info "17.7.3 Class type_­info")) and dynamic type conststd​::​type_info or const *name* where *name* is animplementation-defined class publicly derived fromstd​::​type_info which preserves the behavior described in [[type.info]](type.info "17.7.3 Class type_­info")[.](#expr.typeid-1.sentence-1)[52](#footnote-52 "The recommended name for such a class is extended_­type_­info.") The lifetime of the object referred to by the lvalue extends to the end of the program[.](#expr.typeid-1.sentence-2) Whether or not the destructor is called for thestd​::​type_info object at the end of the program is unspecified[.](#expr.typeid-1.sentence-3) [2](#expr.typeid-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4574) If the type of the [*expression*](expr.comma#nt:expression "7.6.20 Comma operator [expr.comma]") or [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") operand is a (possibly cv-qualified) class type or a reference to (possibly cv-qualified) class type, that class shall be completely defined[.](#expr.typeid-2.sentence-1) [3](#expr.typeid-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4580) If an [*expression*](expr.comma#nt:expression "7.6.20 Comma operator [expr.comma]") operand of typeid is a possibly-parenthesized [*unary-expression*](expr.unary.general#nt:unary-expression "7.6.2.1 General [expr.unary.general]") whose [*unary-operator*](expr.unary.general#nt:unary-operator "7.6.2.1 General [expr.unary.general]") is * and whose operand evaluates to a null pointer value ([[basic.compound]](basic.compound "6.9.4 Compound types")), the typeid expression throws an exception ([[except.throw]](except.throw "14.2 Throwing an exception")) of a type that would match a handler of typestd​::​bad_typeid ([[bad.typeid]](bad.typeid "17.7.5 Class bad_­typeid"))[.](#expr.typeid-3.sentence-1) [*Note [1](#expr.typeid-note-1)*: In other contexts, evaluating such a [*unary-expression*](expr.unary.general#nt:unary-expression "7.6.2.1 General [expr.unary.general]") results in undefined behavior ([[expr.unary.op]](expr.unary.op "7.6.2.2 Unary operators"))[.](#expr.typeid-3.sentence-2) — *end note*] [4](#expr.typeid-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4595) When typeid is applied to a glvalue whose type is a polymorphic class type ([[class.virtual]](class.virtual "11.7.3 Virtual functions")), the result refers to astd​::​type_info object representing the type of the most derived object ([[intro.object]](intro.object "6.8.2 Object model")) (that is, the dynamic type) to which the glvalue refers[.](#expr.typeid-4.sentence-1) [5](#expr.typeid-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4602) When typeid is applied to an expression other than a glvalue of a polymorphic class type, the result refers to a std​::​type_info object representing the static type of the expression[.](#expr.typeid-5.sentence-1) [Lvalue-to-rvalue](conv.lval "7.3.2 Lvalue-to-rvalue conversion [conv.lval]"), [array-to-pointer](conv.array "7.3.3 Array-to-pointer conversion [conv.array]"), and [function-to-pointer](conv.func "7.3.4 Function-to-pointer conversion [conv.func]") conversions are not applied to the expression[.](#expr.typeid-5.sentence-2) If the expression is a prvalue, the [temporary materialization conversion](conv.rval "7.3.5 Temporary materialization conversion [conv.rval]") is applied[.](#expr.typeid-5.sentence-3) The expression is an [unevaluated operand](expr.context#def:unevaluated_operand "7.2.3 Context dependence [expr.context]")[.](#expr.typeid-5.sentence-4) [6](#expr.typeid-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4614) When typeid is applied to a [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]"), the result refers to a std​::​type_info object representing the type of the[*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]")[.](#expr.typeid-6.sentence-1) If the type of the [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") is a reference to a possibly cv-qualified type, the result of thetypeid expression refers to a std​::​type_info object representing the cv-unqualified referenced type[.](#expr.typeid-6.sentence-2) [*Note [2](#expr.typeid-note-2)*: The [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") cannot denote a function type with a [*cv-qualifier-seq*](dcl.decl.general#nt:cv-qualifier-seq "9.3.1 General [dcl.decl.general]") or a [*ref-qualifier*](dcl.decl.general#nt:ref-qualifier "9.3.1 General [dcl.decl.general]") ([[dcl.fct]](dcl.fct "9.3.4.6 Functions"))[.](#expr.typeid-6.sentence-3) — *end note*] [7](#expr.typeid-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4626) If the type of the expression or [*type-id*](dcl.name#nt:type-id "9.3.2 Type names [dcl.name]") is a cv-qualified type, the result of the typeid expression refers to a std​::​type_info object representing the cv-unqualified type[.](#expr.typeid-7.sentence-1) [*Example [1](#expr.typeid-example-1)*: class D { /* ... */ }; D d1;const D d2; typeid(d1) == typeid(d2); // yields truetypeid(D) == typeid(const D); // yields truetypeid(D) == typeid(d2); // yields truetypeid(D) == typeid(const D&); // yields true — *end example*] [8](#expr.typeid-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4644) The type std​::​type_info ([[type.info]](type.info "17.7.3 Class type_­info")) is not predefined; if a standard library declaration ([[typeinfo.syn]](typeinfo.syn "17.7.2 Header synopsis"), [[std.modules]](std.modules "16.4.2.4 Modules")) ofstd​::​type_info does not precede ([[basic.lookup.general]](basic.lookup.general "6.5.1 General")) a typeid expression, the program is ill-formed[.](#expr.typeid-8.sentence-1) [9](#expr.typeid-9) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4650) [*Note [3](#expr.typeid-note-3)*: Subclause [[class.cdtor]](class.cdtor "11.9.5 Construction and destruction") describes the behavior of typeid applied to an object under construction or destruction[.](#expr.typeid-9.sentence-1) — *end note*] [52)](#footnote-52)[52)](#footnoteref-52) The recommended name for such a class isextended_type_info[.](#footnote-52.sentence-1) #### [7.6.1.9](#expr.static.cast) Static cast [[expr.static.cast]](expr.static.cast) [1](#expr.static.cast-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4658) The result of the expression static_cast(v) is the result of converting the expression v to type T[.](#expr.static.cast-1.sentence-1) If T is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the result is a prvalue[.](#expr.static.cast-1.sentence-2) [2](#expr.static.cast-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4670) An lvalue of type “*cv1* B”, where B is a class type, can be cast to type “reference to *cv2* D”, whereD is a complete class derived ([[class.derived]](class.derived "11.7 Derived classes")) from B, if *cv2* is the same cv-qualification as, or greater cv-qualification than,*cv1*[.](#expr.static.cast-2.sentence-1) If B is a virtual base class of D or a base class of a virtual base class of D, or if no valid standard conversion from “pointer to D” to “pointer to B” exists ([[conv.ptr]](conv.ptr "7.3.12 Pointer conversions")), the program is ill-formed[.](#expr.static.cast-2.sentence-2) An xvalue of type “*cv1* B” can be cast to type “rvalue reference to*cv2* D” with the same constraints as for an lvalue of type “*cv1* B”[.](#expr.static.cast-2.sentence-3) If the object of type “*cv1* B” is actually a base class subobject of an object of type D, the result refers to the enclosing object of typeD[.](#expr.static.cast-2.sentence-4) Otherwise, the behavior is undefined[.](#expr.static.cast-2.sentence-5) [*Example [1](#expr.static.cast-example-1)*: struct B { };struct D : public B { }; D d; B &br = d; static_cast(br); // produces lvalue denoting the original d object — *end example*] [3](#expr.static.cast-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4700) An lvalue of type T1 can be cast to type “rvalue reference to T2” if T2 is reference-compatible withT1 ([[dcl.init.ref]](dcl.init.ref "9.5.4 References"))[.](#expr.static.cast-3.sentence-1) If the value is not a bit-field, the result refers to the object or the specified base class subobject thereof; otherwise, the [lvalue-to-rvalue conversion](conv.lval "7.3.2 Lvalue-to-rvalue conversion [conv.lval]") is applied to the bit-field and the resulting prvalue is used as the operand of the static_cast for the remainder of this subclause[.](#expr.static.cast-3.sentence-2) If T2 is an inaccessible ([[class.access]](class.access "11.8 Member access control")) or ambiguous ([[class.member.lookup]](class.member.lookup "6.5.2 Member name lookup")) base class of T1, a program that necessitates such a cast is ill-formed[.](#expr.static.cast-3.sentence-3) [4](#expr.static.cast-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4713) Any expression can be explicitly converted to type cv void, in which case the operand is a discarded-value expression ([[expr.prop]](expr.prop "7.2 Properties of expressions"))[.](#expr.static.cast-4.sentence-1) [*Note [1](#expr.static.cast-note-1)*: Such a static_cast has no result as it is a prvalue of type void; see [[basic.lval]](basic.lval "7.2.1 Value category")[.](#expr.static.cast-4.sentence-2) — *end note*] [*Note [2](#expr.static.cast-note-2)*: However, if the value is in a temporary object ([[class.temporary]](class.temporary "6.8.7 Temporary objects")), the destructor for that object is not executed until the usual time, and the value of the object is preserved for the purpose of executing the destructor[.](#expr.static.cast-4.sentence-3) — *end note*] [5](#expr.static.cast-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4728) Otherwise, an expression E can be explicitly converted to a type T if there is an implicit conversion sequence ([[over.best.ics]](over.best.ics "12.2.4.2 Implicit conversion sequences")) from E to T, if overload resolution for a direct-initialization ([[dcl.init]](dcl.init "9.5 Initializers")) of an object or reference of type T from E would find at least one viable function ([[over.match.viable]](over.match.viable "12.2.3 Viable functions")), or if T is an aggregate type ([[dcl.init.aggr]](dcl.init.aggr "9.5.2 Aggregates")) having a first element x and there is an implicit conversion sequence from E to the type of x[.](#expr.static.cast-5.sentence-1) If T is a reference type, the effect is the same as performing the declaration and initializationT t(E); for some invented temporary variable t ([[dcl.init]](dcl.init "9.5 Initializers")) and then using the temporary variable as the result of the conversion[.](#expr.static.cast-5.sentence-2) Otherwise, the result object is direct-initialized from E[.](#expr.static.cast-5.sentence-3) [*Note [3](#expr.static.cast-note-3)*: The conversion is ill-formed when attempting to convert an expression of class type to an inaccessible or ambiguous base class[.](#expr.static.cast-5.sentence-4) — *end note*] [*Note [4](#expr.static.cast-note-4)*: If T is “array of unknown bound of U”, this direct-initialization defines the type of the expression as U[1][.](#expr.static.cast-5.sentence-5) — *end note*] [6](#expr.static.cast-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4756) Otherwise, the lvalue-to-rvalue ([[conv.lval]](conv.lval "7.3.2 Lvalue-to-rvalue conversion")), array-to-pointer ([[conv.array]](conv.array "7.3.3 Array-to-pointer conversion")), and function-to-pointer ([[conv.func]](conv.func "7.3.4 Function-to-pointer conversion")) conversions are applied to the operand, and the conversions that can be performed using static_cast are listed below[.](#expr.static.cast-6.sentence-1) No other conversion can be performed using static_cast[.](#expr.static.cast-6.sentence-2) [7](#expr.static.cast-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4763) A value of a scoped enumeration type ([[dcl.enum]](dcl.enum "9.8.1 Enumeration declarations")) can be explicitly converted to an integral type; the result is the same as that of converting to the enumeration's underlying type and then to the destination type[.](#expr.static.cast-7.sentence-1) A value of a scoped enumeration type can also be explicitly converted to a floating-point type; the result is the same as that of converting from the original value to the floating-point type[.](#expr.static.cast-7.sentence-2) [8](#expr.static.cast-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4773) A value of integral or enumeration type can be explicitly converted to a complete enumeration type[.](#expr.static.cast-8.sentence-1) If the enumeration type has a fixed underlying type, the value is first converted to that type by integral promotion ([[conv.prom]](conv.prom "7.3.7 Integral promotions")) or integral conversion ([[conv.integral]](conv.integral "7.3.9 Integral conversions")), if necessary, and then to the enumeration type[.](#expr.static.cast-8.sentence-2) If the enumeration type does not have a fixed underlying type, the value is unchanged if the original value is within the range of the enumeration values ([[dcl.enum]](dcl.enum "9.8.1 Enumeration declarations")), and otherwise, the behavior is undefined[.](#expr.static.cast-8.sentence-3) A value of floating-point type can also be explicitly converted to an enumeration type[.](#expr.static.cast-8.sentence-4) The resulting value is the same as converting the original value to the underlying type of the enumeration ([[conv.fpint]](conv.fpint "7.3.11 Floating-integral conversions")), and subsequently to the enumeration type[.](#expr.static.cast-8.sentence-5) [9](#expr.static.cast-9) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4794) A prvalue of floating-point type can be explicitly converted to any other floating-point type[.](#expr.static.cast-9.sentence-1) If the source value can be exactly represented in the destination type, the result of the conversion has that exact representation[.](#expr.static.cast-9.sentence-2) If the source value is between two adjacent destination values, the result of the conversion is an implementation-defined choice of either of those values[.](#expr.static.cast-9.sentence-3) Otherwise, the behavior is undefined[.](#expr.static.cast-9.sentence-4) [10](#expr.static.cast-10) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4805) A prvalue of type “pointer to *cv1* B”, where B is a class type, can be converted to a prvalue of type “pointer to*cv2* D”, where D is a complete class[derived](class.derived "11.7 Derived classes [class.derived]") from B, if *cv2* is the same cv-qualification as, or greater cv-qualification than, *cv1*[.](#expr.static.cast-10.sentence-1) If B is a virtual base class of D or a base class of a virtual base class of D, or if no valid standard conversion from “pointer to D” to “pointer to B” exists ([[conv.ptr]](conv.ptr "7.3.12 Pointer conversions")), the program is ill-formed[.](#expr.static.cast-10.sentence-2) The null pointer value ([[basic.compound]](basic.compound "6.9.4 Compound types")) is converted to the null pointer value of the destination type[.](#expr.static.cast-10.sentence-3) If the prvalue of type “pointer to *cv1* B” points to a B that is actually a base class subobject of an object of type D, the resulting pointer points to the enclosing object of type D[.](#expr.static.cast-10.sentence-4) Otherwise, the behavior is undefined[.](#expr.static.cast-10.sentence-5) [11](#expr.static.cast-11) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4827) A prvalue of type “pointer to member of D of type *cv1*T” can be converted to a prvalue of type “pointer to member ofB of type *cv2* T”, whereD is a complete class type andB is a [base class](class.derived "11.7 Derived classes [class.derived]") of D, if *cv2* is the same cv-qualification as, or greater cv-qualification than, *cv1*[.](#expr.static.cast-11.sentence-1) [*Note [5](#expr.static.cast-note-5)*: Function types (including those used in pointer-to-member-function types) are never cv-qualified ([[dcl.fct]](dcl.fct "9.3.4.6 Functions"))[.](#expr.static.cast-11.sentence-2) — *end note*] If no valid standard conversion from “pointer to member of B of type T” to “pointer to member of D of type T” exists ([[conv.mem]](conv.mem "7.3.13 Pointer-to-member conversions")), the program is ill-formed[.](#expr.static.cast-11.sentence-3) The [null member pointer value](conv.mem#def:value,null_member_pointer "7.3.13 Pointer-to-member conversions [conv.mem]") is converted to the null member pointer value of the destination type[.](#expr.static.cast-11.sentence-4) If class B contains the original member, or is a base class of the class containing the original member, the resulting pointer to member points to the original member[.](#expr.static.cast-11.sentence-5) Otherwise, the behavior is undefined[.](#expr.static.cast-11.sentence-6) [*Note [6](#expr.static.cast-note-6)*: Although class B need not contain the original member, the dynamic type of the object with which indirection through the pointer to member is performed must contain the original member; see [[expr.mptr.oper]](expr.mptr.oper "7.6.4 Pointer-to-member operators")[.](#expr.static.cast-11.sentence-7) — *end note*] [12](#expr.static.cast-12) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4856) A prvalue of type “pointer to *cv1* void” can be converted to a prvalue of type “pointer to *cv2* T”, where T is an object type and *cv2* is the same cv-qualification as, or greater cv-qualification than, *cv1*[.](#expr.static.cast-12.sentence-1) If the original pointer value represents the addressA of a byte in memory andA does not satisfy the alignment requirement of T, then the resulting pointer value ([[basic.compound]](basic.compound "6.9.4 Compound types")) is unspecified[.](#expr.static.cast-12.sentence-2) Otherwise, if the original pointer value points to an object *a*, and there is an object *b* of type similar to T that is [pointer-interconvertible](basic.compound#def:pointer-interconvertible "6.9.4 Compound types [basic.compound]") with *a*, the result is a pointer to *b*[.](#expr.static.cast-12.sentence-3) Otherwise, the pointer value is unchanged by the conversion[.](#expr.static.cast-12.sentence-4) [*Example [2](#expr.static.cast-example-2)*: T* p1 = new T;const T* p2 = static_cast(static_cast(p1));bool b = p1 == p2; // b will have the value true. — *end example*] #### [7.6.1.10](#expr.reinterpret.cast) Reinterpret cast [[expr.reinterpret.cast]](expr.reinterpret.cast) [1](#expr.reinterpret.cast-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4880) The result of the expression reinterpret_cast(v) is the result of converting the expression v to type T[.](#expr.reinterpret.cast-1.sentence-1) If T is an lvalue reference type or an rvalue reference to function type, the result is an lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the result is a prvalue and the[lvalue-to-rvalue](conv.lval "7.3.2 Lvalue-to-rvalue conversion [conv.lval]"), [array-to-pointer](conv.array "7.3.3 Array-to-pointer conversion [conv.array]"), and [function-to-pointer](conv.func "7.3.4 Function-to-pointer conversion [conv.func]") standard conversions are performed on the expression v[.](#expr.reinterpret.cast-1.sentence-2) Conversions that can be performed explicitly using reinterpret_cast are listed below[.](#expr.reinterpret.cast-1.sentence-3) No other conversion can be performed explicitly using reinterpret_cast[.](#expr.reinterpret.cast-1.sentence-4) [2](#expr.reinterpret.cast-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4896) The reinterpret_cast operator shall not cast away constness ([[expr.const.cast]](#expr.const.cast "7.6.1.11 Const cast"))[.](#expr.reinterpret.cast-2.sentence-1) An expression of integral, enumeration, pointer, or pointer-to-member type can be explicitly converted to its own type; such a cast yields the value of its operand[.](#expr.reinterpret.cast-2.sentence-2) [3](#expr.reinterpret.cast-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4902) [*Note [1](#expr.reinterpret.cast-note-1)*: The mapping performed by reinterpret_cast might, or might not, produce a representation different from the original value[.](#expr.reinterpret.cast-3.sentence-1) — *end note*] [4](#expr.reinterpret.cast-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4908) A pointer can be explicitly converted to any integral type large enough to hold all values of its type[.](#expr.reinterpret.cast-4.sentence-1) The mapping function is implementation-defined[.](#expr.reinterpret.cast-4.sentence-2) [*Note [2](#expr.reinterpret.cast-note-2)*: It is intended to be unsurprising to those who know the addressing structure of the underlying machine[.](#expr.reinterpret.cast-4.sentence-3) — *end note*] A value of type std​::​nullptr_t can be converted to an integral type; the conversion has the same meaning and validity as a conversion of(void*)0 to the integral type[.](#expr.reinterpret.cast-4.sentence-4) [*Note [3](#expr.reinterpret.cast-note-3)*: A reinterpret_cast cannot be used to convert a value of any type to the typestd​::​nullptr_t[.](#expr.reinterpret.cast-4.sentence-5) — *end note*] [5](#expr.reinterpret.cast-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4928) A value of integral type or enumeration type can be explicitly converted to a pointer[.](#expr.reinterpret.cast-5.sentence-1) A pointer converted to an integer of sufficient size (if any such exists on the implementation) and back to the same pointer type will have its original value ([[basic.compound]](basic.compound "6.9.4 Compound types"));mappings between pointers and integers are otherwiseimplementation-defined[.](#expr.reinterpret.cast-5.sentence-2) [6](#expr.reinterpret.cast-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4939) A function pointer can be explicitly converted to a function pointer of a different type[.](#expr.reinterpret.cast-6.sentence-1) [*Note [4](#expr.reinterpret.cast-note-4)*: The effect of calling a function through a pointer to a function type ([[dcl.fct]](dcl.fct "9.3.4.6 Functions")) that is not the same as the type used in the definition of the function is undefined ([[expr.call]](#expr.call "7.6.1.3 Function call"))[.](#expr.reinterpret.cast-6.sentence-2) — *end note*] Except that converting a prvalue of type “pointer to T1” to the type “pointer toT2” (where T1 and T2 are function types) and back to its original type yields the original pointer value, the result of such a pointer conversion is unspecified[.](#expr.reinterpret.cast-6.sentence-3) [7](#expr.reinterpret.cast-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4957) An object pointer can be explicitly converted to an object pointer of a different type[.](#expr.reinterpret.cast-7.sentence-1)[53](#footnote-53 "The types can have different cv-qualifiers, subject to the overall restriction that a reinterpret_­cast cannot cast away constness.") When a prvalue v of object pointer type is converted to the object pointer type “pointer to cv T”, the result is static_cast(static_cast(v))[.](#expr.reinterpret.cast-7.sentence-2) [*Note [5](#expr.reinterpret.cast-note-5)*: Converting a pointer of type “pointer to T1” that points to an object of type T1 to the type “pointer to T2” (where T2 is an object type and the alignment requirements of T2 are no stricter than those of T1) and back to its original type yields the original pointer value[.](#expr.reinterpret.cast-7.sentence-3) — *end note*] [8](#expr.reinterpret.cast-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4978) Converting a function pointer to an object pointer type or vice versa is conditionally-supported[.](#expr.reinterpret.cast-8.sentence-1) The meaning of such a conversion isimplementation-defined, except that if an implementation supports conversions in both directions, converting a prvalue of one type to the other type and back, possibly with different cv-qualification, shall yield the original pointer value[.](#expr.reinterpret.cast-8.sentence-2) [9](#expr.reinterpret.cast-9) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4988) The null pointer value ([[basic.compound]](basic.compound "6.9.4 Compound types")) is converted to the null pointer value of the destination type[.](#expr.reinterpret.cast-9.sentence-1) [*Note [6](#expr.reinterpret.cast-note-6)*: A null pointer constant of type std​::​nullptr_t cannot be converted to a pointer type, and a null pointer constant of integral type is not necessarily converted to a null pointer value[.](#expr.reinterpret.cast-9.sentence-2) — *end note*] [10](#expr.reinterpret.cast-10) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L4997) A prvalue of type “pointer to member of X of type T1” can be explicitly converted to a prvalue of a different type “pointer to member ofY of type T2” if T1 and T2 are both function types or both object types[.](#expr.reinterpret.cast-10.sentence-1)[54](#footnote-54 "T1 and T2 can have different cv-qualifiers, subject to the overall restriction that a reinterpret_­cast cannot cast away constness.") The null member pointer value ([[conv.mem]](conv.mem "7.3.13 Pointer-to-member conversions")) is converted to the null member pointer value of the destination type[.](#expr.reinterpret.cast-10.sentence-2) The result of this conversion is unspecified, except in the following cases: - [(10.1)](#expr.reinterpret.cast-10.1) Converting a prvalue of type “pointer to member function” to a different pointer-to-member-function type and back to its original type yields the original pointer-to-member value[.](#expr.reinterpret.cast-10.1.sentence-1) - [(10.2)](#expr.reinterpret.cast-10.2) Converting a prvalue of type “pointer to data member of X of type T1” to the type “pointer to data member of Y of type T2” (where the alignment requirements of T2 are no stricter than those of T1) and back to its original type yields the original pointer-to-member value[.](#expr.reinterpret.cast-10.2.sentence-1) [11](#expr.reinterpret.cast-11) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5025) If v is a glvalue of type T1, designating an object or function *x*, it can be cast to the type “reference to T2” if an expression of type “pointer to T1” can be explicitly converted to the type “pointer to T2” using a reinterpret_cast[.](#expr.reinterpret.cast-11.sentence-1) The result is that of *reinterpret_cast(p) where p is a pointer to *x* of type “pointer to T1”[.](#expr.reinterpret.cast-11.sentence-2) [*Note [7](#expr.reinterpret.cast-note-7)*: No temporary is materialized ([[conv.rval]](conv.rval "7.3.5 Temporary materialization conversion")) or created, no copy is made, and no constructors ([[class.ctor]](class.ctor "11.4.5 Constructors")) or conversion functions ([[class.conv]](class.conv "11.4.8 Conversions")) are called[.](#expr.reinterpret.cast-11.sentence-3)[55](#footnote-55 "This is sometimes referred to as a type pun when the result refers to the same object as the source glvalue.") — *end note*] [53)](#footnote-53)[53)](#footnoteref-53) The types can have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away constness[.](#footnote-53.sentence-1) [54)](#footnote-54)[54)](#footnoteref-54) T1 and T2 can have different cv-qualifiers, subject to the overall restriction that a reinterpret_cast cannot cast away constness[.](#footnote-54.sentence-1) [55)](#footnote-55)[55)](#footnoteref-55) This is sometimes referred to as a type pun when the result refers to the same object as the source glvalue[.](#footnote-55.sentence-1) #### [7.6.1.11](#expr.const.cast) Const cast [[expr.const.cast]](expr.const.cast) [1](#expr.const.cast-1) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5051) The result of the expression const_cast(v) is of typeT[.](#expr.const.cast-1.sentence-1) If T is an lvalue reference to object type, the result is an lvalue; if T is an rvalue reference to object type, the result is an xvalue; otherwise, the result is a prvalue and the[lvalue-to-rvalue](conv.lval "7.3.2 Lvalue-to-rvalue conversion [conv.lval]"), [array-to-pointer](conv.array "7.3.3 Array-to-pointer conversion [conv.array]"), and [function-to-pointer](conv.func "7.3.4 Function-to-pointer conversion [conv.func]") standard conversions are performed on the expression v[.](#expr.const.cast-1.sentence-2) The [temporary materialization conversion](conv.rval "7.3.5 Temporary materialization conversion [conv.rval]") is not performed on v, other than as specified below[.](#expr.const.cast-1.sentence-3) Conversions that can be performed explicitly usingconst_cast are listed below[.](#expr.const.cast-1.sentence-4) No other conversion shall be performed explicitly using const_cast[.](#expr.const.cast-1.sentence-5) [2](#expr.const.cast-2) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5068) [*Note [1](#expr.const.cast-note-1)*: Subject to the restrictions in this subclause, an expression can be cast to its own type using a const_cast operator[.](#expr.const.cast-2.sentence-1) — *end note*] [3](#expr.const.cast-3) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5074) For two similar object pointer or pointer to data member typesT1 and T2 ([[conv.qual]](conv.qual "7.3.6 Qualification conversions")), a prvalue of type T1 can be explicitly converted to the type T2 using a const_cast if, considering the qualification-decompositions of both types, each P1i is the same as P2i for all i[.](#expr.const.cast-3.sentence-1) If v is a null pointer or null member pointer, the result is a null pointer or null member pointer, respectively[.](#expr.const.cast-3.sentence-2) Otherwise, the result points to or past the end of the same object, or points to the same member, respectively, as v[.](#expr.const.cast-3.sentence-3) [4](#expr.const.cast-4) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5086) For two object types T1 and T2, if a pointer to T1 can be explicitly converted to the type “pointer to T2” using aconst_cast, then the following conversions can also be made: - [(4.1)](#expr.const.cast-4.1) an lvalue of type T1 can be explicitly converted to an lvalue of type T2 using the cast const_cast; - [(4.2)](#expr.const.cast-4.2) a glvalue of type T1 can be explicitly converted to an xvalue of type T2 using the cast const_cast; and - [(4.3)](#expr.const.cast-4.3) if T1 is a class or array type, a prvalue of type T1 can be explicitly converted to an xvalue of type T2 using the castconst_cast[.](#expr.const.cast-4.sentence-1) The temporary materialization conversion is performed on v[.](#expr.const.cast-4.3.sentence-2) The result refers to the same object as the (possibly converted) operand[.](#expr.const.cast-4.sentence-2) [*Example [1](#expr.const.cast-example-1)*: typedef int *A[3]; // array of 3 pointer to inttypedef const int *const CA[3]; // array of 3 const pointer to const intauto &&r2 = const_cast(CA{}); // OK, temporary materialization conversion is performed — *end example*] [5](#expr.const.cast-5) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5114) [*Note [2](#expr.const.cast-note-2)*: Depending on the type of the object, a write operation through the pointer, lvalue or pointer to data member resulting from aconst_cast that casts away a const-qualifier[56](#footnote-56 "const_­cast is not limited to conversions that cast away a const-qualifier.") can produce undefined behavior ([[dcl.type.cv]](dcl.type.cv "9.2.9.2 The cv-qualifiers"))[.](#expr.const.cast-5.sentence-1) — *end note*] [6](#expr.const.cast-6) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5127) A conversion from a type T1 to a type T2[*casts away constness*](#def:casting_away_constness "7.6.1.11 Const cast [expr.const.cast]") if T1 and T2 are different, there is a qualification-decomposition ([[conv.qual]](conv.qual "7.3.6 Qualification conversions")) of T1 yielding *n* such thatT2 has a qualification-decomposition of the formcv20 P20 cv21 P21 ⋯ cv2n−1 P2n−1 cv2n U2, and there is no qualification conversion that converts T1 tocv20 P10 cv21 P11 ⋯ cv2n−1 P1n−1 cv2n U1[.](#expr.const.cast-6.sentence-1) [7](#expr.const.cast-7) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5143) Casting from an lvalue of type T1 to an lvalue of typeT2 using an lvalue reference cast or casting from an expression of type T1 to an xvalue of type T2 using an rvalue reference cast casts away constness if a cast from a prvalue of type “pointer to T1” to the type “pointer toT2” casts away constness[.](#expr.const.cast-7.sentence-1) [8](#expr.const.cast-8) [#](http://github.com/Eelis/draft/tree/9adde4bc1c62ec234483e63ea3b70a59724c745a/source/expressions.tex#L5151) [*Note [3](#expr.const.cast-note-3)*: Some conversions which involve only changes in cv-qualification cannot be done using const_cast[.](#expr.const.cast-8.sentence-1) For instance, conversions between pointers to functions are not covered because such conversions lead to values whose use causes undefined behavior[.](#expr.const.cast-8.sentence-2) For the same reasons, conversions between pointers to member functions, and in particular, the conversion from a pointer to a const member function to a pointer to a non-const member function, are not covered[.](#expr.const.cast-8.sentence-3) — *end note*] [56)](#footnote-56)[56)](#footnoteref-56) const_cast is not limited to conversions that cast away a const-qualifier[.](#footnote-56.sentence-1)