Files
modern-cpp-tutorial/exercises/7/7.1/thread_pool.hpp
2020-03-15 15:30:48 +01:00

143 lines
4.4 KiB
C++

//
// thread_pool.hpp
//
// exercise solution - chapter 7
// modern cpp tutorial
//
// created by changkun at changkun.de
// https://github.com/changkun/modern-cpp-tutorial/
//
#ifndef THREAD_POOL_H
#define THREAD_POOL_H
#include <vector> // std::vector
#include <queue> // std::queue
#include <memory> // std::make_shared
#include <thread> // std::thread
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable
#include <future> // std::future, std::packaged_task
#include <functional> // std::function, std::bind
#include <stdexcept> // std::runtime_error
#include <utility> // std::move, std::forward
class ThreadPool {
public:
// initialize the number of concurrency threads
ThreadPool(size_t);
// enqueue new thread task
template<class F, class... Args>
decltype(auto) enqueue(F&& f, Args&&... args);
// destroy thread pool and all created threads
~ThreadPool();
private:
// thread list, stores all threads
std::vector< std::thread > workers;
// queue task, the type of queue elements are functions with void return type
std::queue< std::function<void()> > tasks;
// for synchonization
std::mutex queue_mutex;
// std::condition_variable is a new feature from c++11,
// it's a synchronization primitives. it can be used
// to block a thread or threads at the same time until
// all of them modified condition_variable.
std::condition_variable condition;
bool stop;
};
// constructor initialize a fixed size of worker
inline ThreadPool::ThreadPool(size_t threads): stop(false) {
// initialize worker
for(size_t i = 0;i<threads;++i)
// std::vector::emplace_back :
// append to the end of vector container
// this element will be constructed at the end of container, without copy and move behavior
workers.emplace_back([this] { // the lambda express capture this, i.e. the instance of thread pool
// avoid fake awake
for(;;) {
// define function task container, return type is void
std::function<void()> task;
// critical section
{
// get mutex
std::unique_lock<std::mutex> lock(this->queue_mutex);
// block current thread
this->condition.wait(lock,
[this]{ return this->stop || !this->tasks.empty(); });
// return if queue empty and task finished
if(this->stop && this->tasks.empty())
return;
// otherwise execute the first element of queue
task = std::move(this->tasks.front());
this->tasks.pop();
}
// execution
task();
}
}
);
}
// Enqueue a new thread
// use variadic templates and tail return type
template<class F, class... Args>
decltype(auto) ThreadPool::enqueue(F&& f, Args&&... args) {
// deduce return type
using return_type = typename std::result_of<F(Args...)>::type;
// fetch task
auto task = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
// critical section
{
std::unique_lock<std::mutex> lock(queue_mutex);
// avoid add new thread if theadpool is destroyed
if(stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
// add thread to queue
tasks.emplace([task]{ (*task)(); });
}
// notify a wait thread
condition.notify_one();
return res;
}
// destroy everything
inline ThreadPool::~ThreadPool()
{
// critical section
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
// wake up all threads
condition.notify_all();
// let all processes into synchronous execution, use c++11 new for-loop: for(value:values)
for(std::thread &worker: workers)
worker.join();
}
#endif