diff --git a/book/en-us/07-thread.md b/book/en-us/07-thread.md index 8c5d033..359c6cb 100644 --- a/book/en-us/07-thread.md +++ b/book/en-us/07-thread.md @@ -468,7 +468,7 @@ To achieve the ultimate performance and achieve consistency of various strength As you can see, `std::memory_order_release` ensures that a write before a release does not occur after the release operation, which is a **backward barrier**, and `std::memory_order_acquire` ensures that a subsequent read or write after a acquire does not occur before the acquire operation, which is a **forward barrier**. For the `std::memory_order_acq_rel` option, combines the characteristics of the two barriers and determines a unique memory barrier, such that reads and writes of the current thread will not be rearranged across the barrier. - + Let's check an example: ```cpp @@ -495,7 +495,7 @@ To achieve the ultimate performance and achieve consistency of various strength acquire.join(); ``` - In this case we used `compare_exchange_strong`, which is the Compare-and-swap primitive, which has a weaker version, `compare_exchange_weak`, which allows a failure to be returned even if the exchange is successful. The reason is due to a false failure on some platforms, specifically when the CPU performs a context switch, another thread loads the same address to produce an inconsistency. In addition, the performance of `compare_exchange_strong` may be slightly worse than `compare_exchange_weak`, but in most cases, `compare_exchange_strong` should be limited. + In this case we used `compare_exchange_strong`, which is the Compare-and-swap primitive, which has a weaker version, `compare_exchange_weak`, which allows a failure to be returned even if the exchange is successful. The reason is due to a false failure on some platforms, specifically when the CPU performs a context switch, another thread loads the same address to produce an inconsistency. In addition, the performance of `compare_exchange_strong` may be slightly worse than `compare_exchange_weak`. However, in most cases, `compare_exchange_weak` is discouraged due to the complexity of its usage. 4. Sequential Consistent Model: Under this model, atomic operations satisfy sequence consistency, which in turn can cause performance loss. It can be specified explicitly by `std::memory_order_seq_cst`. Let's look at a final example: diff --git a/book/zh-cn/07-thread.md b/book/zh-cn/07-thread.md index 6a402bc..ea99ed0 100644 --- a/book/zh-cn/07-thread.md +++ b/book/zh-cn/07-thread.md @@ -260,7 +260,7 @@ int main() { } ``` -从直观上看,`t2` 中 `a = 5;` 这一条语句似乎总在 `flag = 1;` 之前得到执行,而 `t1` 中 `while (flag != 1)` +从直观上看,`t2` 中 `a = 5;` 这一条语句似乎总在 `flag = 1;` 之前得到执行,而 `t1` 中 `while (flag != 1)` 似乎保证了 `std::cout << "b = " << b << std::endl;` 不会再标记被改变前执行。从逻辑上看,似乎 `b` 的值应该等于 5。 但实际情况远比此复杂得多,或者说这段代码本身属于未定义的行为,因为对于 `a` 和 `flag` 而言,他们在两个并行的线程中被读写, 出现了竞争。除此之外,即便我们忽略竞争读写,仍然可能受 CPU 的乱序执行,编译器对指令的重排的影响, @@ -408,7 +408,7 @@ int main() { y.load() c = a + b x.store(3) ``` - 上面给出的三种例子都是属于因果一致的,因为整个过程中,只有 `c` 对 `a` 和 `b` 产生依赖,而 `x` 和 `y` + 上面给出的三种例子都是属于因果一致的,因为整个过程中,只有 `c` 对 `a` 和 `b` 产生依赖,而 `x` 和 `y` 在此例子中表现为没有关系(但实际情况中我们需要更详细的信息才能确定 `x` 与 `y` 确实无关) 4. 最终一致性:是最弱的一致性要求,它只保障某个操作在未来的某个时间节点上会被观察到,但并未要求被观察到的时间。因此我们甚至可以对此条件稍作加强,例如规定某个操作被观察到的时间总是有界的。当然这已经不在我们的讨论范围之内了。 @@ -504,7 +504,7 @@ int main() { acquire.join(); ``` - 在此例中我们使用了 `compare_exchange_strong`,它便是比较交换原语(Compare-and-swap primitive),它有一个更弱的版本,即 `compare_exchange_weak`,它允许即便交换成功,也仍然返回 `false` 失败。其原因是因为在某些平台上虚假故障导致的,具体而言,当 CPU 进行上下文切换时,另一线程加载同一地址产生的不一致。除此之外,`compare_exchange_strong` 的性能可能稍差于 `compare_exchange_weak`,但大部分情况下,`compare_exchange_strong` 应该被有限考虑。 + 在此例中我们使用了 `compare_exchange_strong` 比较交换原语(Compare-and-swap primitive),它有一个更弱的版本,即 `compare_exchange_weak`,它允许即便交换成功,也仍然返回 `false` 失败。其原因是因为在某些平台上虚假故障导致的,具体而言,当 CPU 进行上下文切换时,另一线程加载同一地址产生的不一致。除此之外,`compare_exchange_strong` 的性能可能稍差于 `compare_exchange_weak`,但大部分情况下,鉴于其使用的复杂度而言,`compare_exchange_weak` 应该被有限考虑。 4. 顺序一致模型:在此模型下,原子操作满足顺序一致性,进而可能对性能产生损耗。可显式的通过 `std::memory_order_seq_cst` 进行指定。最后来看一个例子: