# C++11/14/17 ## Overview Many of these descriptions and examples come from their proposal papers, summarized in my own words. C++17 includes the following new language features: - [template argument deduction for class templates](#template-argument-deduction-for-class-templates) - [declaring non-type template parameters with auto](#declaring-non-type-template-parameters-with-auto) - [folding expressions](#folding-expressions) - [new rules for auto deduction from braced-init-list](#new-rules-for-auto-deduction---from---braced---init---list) - [constexpr lambda](#constexpr-lambda) - [inline variables](#inline-variables) - [nested namespaces](#nested-namespaces) - [structured bindings](#structured-bindings) - [selection statements with initializer](#selection-statements-with-initializer) - [constexpr if](#constexpr-if) C++17 includes the following new library features: - [std::variant](#stdvariant) - [std::optional](#stdoptional) - [std::any](#stdany) - [std::string_view](#stdstring_view) - [std::invoke](#stdinvoke) - [std::apply](#stdapply) - [splicing for maps and sets](#splicing-for-maps-and-sets) C++14 includes the following new language features: - [binary literals](#binary-literals) - [generic lambda expressions](#generic-lambda-expressions) - [return type deduction](#return-type-deduction) - [decltype(auto)](#decltypeauto) - [relaxing constraints on constexpr functions](#relaxing-constraints-on-constexpr-functions) C++14 includes the following new library features: - [user-defined literals for standard library types](#user-defined-literals-for-standard-library-types) - [compile-time integer sequences](#compile---time-integer-sequences) C++11 includes the following new language features: - [move semantics](#move-semantics) - [variadic templates](#variadic-templates) - [rvalue references](#rvalue-references) - [initializer lists](#initializer-lists) - [static assertions](#static-assertions) - [auto](#auto) - [lambda expressions](#lambda-expressions) - [decltype](#decltype) - [template aliases](#template-aliases) - [nullptr](#nullptr) - [strongly-typed enums](#strongly---typed-enums) - [attributes](#attributes) - [constexpr](#constexpr) - [delegating constructors](#delegating-constructors) C++11 includes the following new library features: - [std::move](#stdmove) ## C++17 Language Features ### Template argument deduction for class templates Automatic template argument deduction much like how it's done for functions, but now including class constructors. ```c++ template struct MyContainer { T val; MyContainer(T val) : val(val) {} // ... }; MyContainer c1{ 1 }; // OK MyContainer MyContainer c2; // OK MyContainer<> ``` ### Declaring non-type template parameters with auto Following the deduction rules of `auto`, while respecting the non-type template parameter list of allowable types[\*], template arguments can be deduced from the types of its arguments: ```c++ // Explicitly pass type `int` as template argument. auto seq = std::integer_sequence(); // Type is deduced to be `int`. auto seq2 = my_integer_sequence<0, 1, 2>(); ``` \* - For example, you cannot use a `double` as a template parameter type, which also makes this an invalid deduction using `auto`. ### Folding expressions A fold expression performs a fold of a template parameter pack over a binary operator. * An expression of the form `(... op e)` or `(e op ...)`, where `op` is a fold-operator and `e` is an unexpanded parameter pack, are called _unary folds_. * An expression of the form `(e1 op1 ... op2 e2)`, where `op1` and `op2` are fold-operators, is called a _binary fold_. Either `e1` or `e2` are unexpanded parameter packs, but not both. ```c++ template bool logicalAnd(Args... args) { // Binary folding. return (true && ... && args); } bool b = true; bool& b2 = b; logicalAnd(b, b2, true); // == true ``` ```c++ template auto sum(Args... args) { // Unary folding. return (... + args); } sum(1.0, 2.0f, 3); // == 6.0 ``` ### New rules for auto deduction from braced-init-list Changes to `auto` deduction when used with the uniform initialization syntax. Previously, `auto x{ 3 };` deduces a `std::initializer_list`, which now deduces to `int`. ```c++ auto x1{ 1, 2, 3 }; // error: not a single element auto x2 = { 1, 2, 3 }; // decltype(x2) is std::initializer_list auto x3{ 3 }; // decltype(x3) is int auto x4{ 3.0 }; // decltype(x4) is double ``` ### constexpr lambda Compile-time lambdas using `constexpr`. ```c++ auto identity = [] (int n) constexpr { return n; }; static_assert(identity(123) == 123); ``` ```c++ constexpr auto add = [] (int x, int y) { auto L = [=] { return x; }; auto R = [=] { return y; }; return [=] { return L() + R(); }; }; static_assert(add(1, 2)() == 3); ``` ```c++ constexpr int addOne(int n) { return [n] { return n + 1; }(); } static_assert(addOne(1) == 2); ``` ### Inline variables The inline specifier can be applied to variables as well as to functions. A variable declared inline has the same semantics as a function declared inline. ```c++ // Disassembly example using compiler explorer. struct S { int x; }; inline S x1 = S{321}; // mov esi, dword ptr [x1] // x1: .long 321 S x2 = S{123}; // mov eax, dword ptr [.L_ZZ4mainE2x2] // mov dword ptr [rbp - 8], eax // .L_ZZ4mainE2x2: .long 123 ``` ### Nested namespaces Using the namespace resolution operator to create nested namespace definitions. ```c++ namespace A { namespace B { namespace C { int i; } } } // vs. namespace A::B::C { int i; } ``` ### Structured bindings A proposal for de-structuring initialization, that would allow writing `auto {x, y, z} = expr;` where the type of `expr` was a tuple-like object, whose elements would be bound to the variables `x`, `y`, and `z` (which this construct declares). _Tuple-like objects_ include `std::tuple`, `std::pair`, `std::array`, and aggregate structures. ```c++ using Coordinate = std::pair; Coordinate origin() { return Coordinate{0, 0}; } const auto [ x, y ] = origin(); x; // == 0 y; // == 0 ``` ### Selection statements with initializer New versions of the `if` and `switch` statements which simplify common code patterns and help users keep scopes tight. ```c++ { std::lock_guard lk(mx); if (v.empty()) v.push_back(val); } // vs. if (std::lock_guard lk(mx); v.empty()) { v.push_back(val); } ``` ```c++ Foo gadget(args); switch (auto s = gadget.status()) { case OK: gadget.zip(); break; case Bad: throw BadFoo(s.message()); } // vs. switch (Foo gadget(args); auto s = gadget.status()) { case OK: gadget.zip(); break; case Bad: throw BadFoo(s.message()); } ``` ### constexpr if Write code that is instantiated depending on a compile-time condition. ```c++ template constexpr bool isIntegral() { if constexpr (std::is_integral::value) { return true; } else { return false; } } static_assert(isIntegral() == true); static_assert(isIntegral() == true); static_assert(isIntegral() == false); struct S {}; static_assert(isIntegral() == false); ``` ## C++17 Library Features ### std::variant The class template `std::variant` represents a type-safe `union`. An instance of `std::variant` at any given time holds a value of one of its alternative types (it's also possible for it to be valueless). ```c++ std::variant v{ 12 }; std::get(v); // == 12 std::get<0>(v); // == 12 v = 12.0; std::get(v); // == 12.0 std::get<1>(v); // == 12.0 ``` ### std::optional The class template `std::optional` manages an optional contained value, i.e. a value that may or may not be present. A common use case for optional is the return value of a function that may fail. ```c++ std::optional create(bool b) { if (b) { return "Godzilla"; } else { return {}; } } create(false).value_or("empty"); // == "empty" create(true).value(); // == "Godzilla" // optional-returning factory functions are usable as conditions of while and if if (auto str = create(true)) { // ... } ``` ### std::any A type-safe container for single values of any type. ```c++ std::any x{ 5 }; x.has_value() // == true std::any_cast(x) // == 5 std::any_cast(x) = 10; std::any_cast(x) // == 10 ``` ### std::string_view A non-owning reference to a string. Useful for providing an abstraction on top of strings (e.g. for parsing). ```c++ // Regular strings. std::string_view cppstr{ "foo" }; // Wide strings. std::wstring_view wcstr_v{ L"baz" }; // Character arrays. char array[3] = {'b', 'a', 'r'}; std::string_view array_v(array, sizeof array); ``` ```c++ std::string str{ " trim me" }; std::string_view v{ str }; v.remove_prefix(std::min(v.find_first_not_of(" "), v.size())); str; // == " trim me" v; // == "trim me" ``` ### std::invoke Invoke a `Callable` object with parameters. Examples of `Callable` objects are `std::function` or `std::bind` where an object can be called similarly to a regular function. ```c++ template class Proxy { Callable c; public: Proxy(Callable c): c(c) {} template decltype(auto) operator()(Args&&... args) { // ... return std::invoke(c, std::forward(args)...); } }; auto add = [] (int x, int y) { return x + y; }; Proxy p{ add }; p(1, 2); // == 3 ``` ### std::apply Invoke a `Callable` object with a tuple of arguments. ```c++ auto add = [] (int x, int y) { return x + y; }; std::apply(add, std::make_tuple( 1, 2 )); // == 3 ``` ### Splicing for maps and sets Moving nodes and merging containers without the overhead of expensive copies, moves, or heap allocations/deallocations. Moving elements from one map to another: ```c++ std::map src{ { 1, "one" }, { 2, "two" }, { 3, "buckle my shoe" } }; std::map dst{ { 3, "three" } }; dst.insert(src.extract(src.find(1))); // Cheap remove and insert of { 1, "one" } from `src` to `dst`. dst.insert(src.extract(2)); // Cheap remove and insert of { 2, "two" } from `src` to `dst`. // dst == { { 1, "one" }, { 2, "two" }, { 3, "three" } }; ``` Inserting an entire set: ```c++ std::set src{1, 3, 5}; std::set dst{2, 4, 5}; dst.merge(src); // src == { 5 } // dst == { 1, 2, 3, 4, 5 } ``` Inserting elements which outlive the container: ```c++ auto elementFactory() { std::set<...> s; s.emplace(...); return s.extract(s.begin()); } s2.insert(elementFactory()); ``` Changing the key of a map element: ```c++ std::map m{ { 1, "one" }, { 2, "two" }, { 3, "three" } }; auto e = m.extract(2); e.key() = 4; m.insert(std::move(e)); // m == { { 1, "one" }, { 3, "three" }, { 4, "two" } } ``` ## C++14 Language Features ### Binary literals Binary literals provide a convenient way to represent a base-2 number. ```c++ 0b110 // == 6 0b11111111 // == 255 ``` ### Generic lambda expressions C++14 now allows the `auto` type-specifier in the parameter list, enabling polymorphic lambdas. ```c++ auto identity = [](auto x) { return x; }; int three = identity(3); // == 3 std::string foo = identity("foo"); // == "foo" ``` ### Return type deduction Using an `auto` return type in C++14, the compiler will attempt to deduce the type for you. With lambdas, you can now deduce its return type using `auto`, which makes returning a deduced reference or rvalue reference possible. ```c++ // Deduce return type as `int`. auto f(int i) { return i; } ``` ```c++ template auto& f(T& t) { return t; } // Returns a reference to a deduced type. auto g = [](auto& x) -> auto& { return f(x); }; int y = 123; int& z = g(y); // reference to `y` ``` ### decltype(auto) The `decltype(auto)` type-specifier also deduces a type like `auto` does. However, it deduces return types while keeping their references or "const-ness", while `auto` will not. ```c++ const int x = 0; auto x1 = x; // int decltype(auto) x2 = x; // const int int y = 0; int& y1 = y; auto y2 = y; // int decltype(auto) y3 = y; // int& int&& z = 0; auto z1 = std::move(z); // int decltype(auto) z2 = std::move(z); // int&& ``` ```c++ // Note: Especially useful for generic code! // Return type is `int`. auto f(const int& i) { return i; } // Return type is `const int&`. decltype(auto) g(const int& i) { return i; } int x = 123; static_assert(std::is_same::value == 0); static_assert(std::is_same::value == 1); static_assert(std::is_same::value == 1); ``` ### Relaxing constraints on constexpr functions In C++11, `constexpr` function bodies could only contain a very limited set of syntax, including (but not limited to): `typedef`s, `using`s, and a single `return` statement. In C++14, the set of allowable syntax expands greatly to include the most common syntax such as `if` statements, multiple `return`s, loops, etc. ```c++ constexpr int factorial(int n) { if (n <= 1) { return 1; } else { return n * factorial(n - 1); } } factorial(5); // == 120 ``` ## C++14 Library Features ### User-defined literals for standard library types New user-defined literals for standard library types, including new built-in literals for `chrono` and `basic_string`. These can be `constexpr` meaning they can be used at compile-time. Some uses for these literals include compile-time integer parsing, binary literals, and imaginary number literals. ```c++ using namespace std::chrono_literals; auto day = 24h; day.count(); // == 24 std::chrono::duration_cast(day).count(); // == 1440 ``` ### Compile-time integer sequences The class template `std::integer_sequence` represents a compile-time sequence of integers. There are a few helpers built on top: * `std::make_integer_sequence` - creates a sequence of `0, ..., N - 1` with type `T`. * `std::index_sequence_for` - converts a template parameter pack into an integer sequence. Convert an array into a tuple: ```c++ template decltype(auto) a2t_impl(const Array& a, std::integer_sequence) { return std::make_tuple(a[I]...); } template> decltype(auto) a2t(const std::array& a) { return a2t_impl(a, Indices()); } ``` ## C++11 Language Features ### Move semantics Move semantics is mostly about performance optimization: the ability to move an object without the expensive overhead of copying. The difference between a copy and a move is that a copy leaves the source unchanged, and a move will leave the source either unchanged or radically different -- depending on what the source is. For plain old data, a move is the same as a copy. To move an object means to transfer ownership of some resource it manages to another object. You could think of this as changing pointers held by the source object to be moved, or now held, by the destination object; the resource remains in its location in memory. Such an inexpensive transfer of resources is extremely useful when the source is an `rvalue`, where the potentially dangerous side-effect of changing the source after the move is redundant since the source is a temporary object that won't be accessible later. Moves also make it possible to transfer objects such as `std::unique_ptr`s, smart pointers that are designed to hold a pointer to a unique object, from one scope to another. See the sections on: rvalue references, defining move special member functions, `std::move`, `std::forward`. ### Rvalue references C++11 introduces a new reference termed the _rvalue reference_. An rvalue reference to `A` is created with the syntax `A&&`. This enables two major features: move semantics; and _perfect forwarding_, the ability to pass arguments while maintaining information about them as lvalues/rvalues in a generic way. `auto` type deduction with lvalues and rvalues: ```c++ int x = 0; // `x` is an lvalue of type `int` int& xl = x; // `xl` is an lvalue of type `int&` int&& xr = x; // compiler error -- `x` is an lvalue int&& xr2 = 0; // `xr2` is an lvalue of type `int&&` auto& al = x; // `al` is an lvalue of type `int&` auto&& al2 = x; // `al2` is an lvalue of type `int&` auto&& ar = 0; // `ar` is an lvalue of type `int&&` ``` See also: `std::move`, `std::forward`. ### Variadic templates The `...` syntax creates a _parameter pack_ or expands one. A template _parameter pack_ is a template parameter that accepts zero or more template arguments (non-types, types, or templates). A template with at least one parameter pack is called a _variadic template_. ```c++ template struct arity { constexpr static int value = sizeof...(T); }; static_assert(arity<>::value == 0); static_assert(arity::value == 3); ``` ### Initializer lists A lightweight array-like container of elements created using a "braced list" syntax. For example, `{ 1, 2, 3 }` creates a sequences of integers, that has type `std::initializer_list`. Useful as a replacement to passing a vector of objects to a function. ```c++ int sum(const std::initializer_list& list) { int total = 0; for (auto& e : list) { total += e; } return total; } auto list = { 1, 2, 3 }; f(list); // == 6 f({ 1, 2, 3 }); // == 6 f({}); // == 0 ``` ### Static assertions Assertions that are evaluated at compile-time. ```c++ constexpr int x = 0; constexpr int y = 1; static_assert(x == y, "x != y"); ``` ### auto `auto`-typed variables are deduced by the compiler according to the type of their initializer. ```c++ auto a = 3.14; // double auto b = 1; // int auto& c = b; // int& auto d = { 0 }; // std::initializer_list auto&& e = 1; // int&& auto&& f = b; // int& auto g = new auto(123); // int* const auto h = 1; // const int auto i = 1, j = 2, k = 3; // int, int, int auto l = 1, m = true, n = 1.61; // error -- `l` deduced to be int, `m` is bool auto o; // error -- `o` requires initializer ``` Extremely useful for readability, especially for complicated types: ```c++ std::vector v = ...; std::vector::const_iterator cit = v.cbegin(); // vs. auto cit = v.cbegin(); ``` Functions can also deduce the return type using `auto`. In C++11, a return type must be specified either explicitly, or using `decltype` like so: ```c++ template auto add(X x, Y y) -> decltype(x + y) { return x + y; } add(1, 2); // == 3 add(1, 2.0); // == 3.0 add(1.5, 1.5); // == 3.0 ``` The trailing return type in the above example is the _declared type_ (see section on `decltype`) of the expression `x + y`. For example, if `x` is an integer and `y` is a double, `decltype(x + y)` is a double. Therefore, the above function will deduce the type depending on what type the expression `x + y` yields. Notice that the trailing return type has access to its parameters, and `this` when appropriate. ### Lambda expressions A `lambda` is an unnamed function object capable of capturing variables in scope. It features: a _capture list_; an optional set of parameters with an optional trailing return type; and a body. Examples of capture lists: * `[]` - captures nothing. * `[=]` - capture local objects (local variables, parameters) in scope by value. * `[&]` - capture local objects (local variables, parameters) in scope by reference. * `[this]` - capture `this` pointer by value. * `[a, &b]` - capture objects `a` by value, `b` by reference. ```c++ int x = 1; auto getX = [=]{ return x; }; getX(); // == 1 auto addX = [=](int y) { return x + y; }; addX(1); // == 2 auto getXRef = [&]() -> int& { return x; }; getXRef(); // int& to `x` ``` ### decltype `decltype` is an operator which returns the _declared type_ of an expression passed to it. Examples of `decltype`: ```c++ int a = 1; // `a` is declared as type `int` decltype(x) b = a; // `decltype(x)` is `int` const int& c = a; // `c` is declared as type `const int&` decltype(c) d = a; // `decltype(c)` is `const int&` decltype(123) e = 123; // `decltype(123)` is `int` int&& f = 1; // `f` is declared as type `int&&` decltype(f) g = 1; // `decltype(f) is `int&&` decltype((a)) h = x; // `decltype((a))` is int& ``` ```c++ template auto add(X x, Y y) -> decltype(x + y) { return x + y; } add(1, 2.0); // `decltype(x + y)` => `decltype(3.0)` => `double` ``` ### Template aliases Semantically similar to using a `typedef` however, template aliases with `using` are easier to read and are compatible with templates. ```c++ template using Vec = std::vector; Vec v{}; // std::vector using String = std::string; String s{"foo"}; ``` ### nullptr C++11 introduces a new null pointer type designed to replace C's `NULL` macro. `nullptr` itself is of type `std::nullptr_t` and can be implicitly converted into pointer types, and unlike `NULL`, not convertible to integral types except `bool`. ```c++ void foo(int); void foo(char*); foo(NULL); // error -- ambiguous foo(nullptr); // calls foo(char*) ``` ### Strongly-typed enums Type-safe enums that solve a variety of problems with C-style enums including: implicit conversions, inability to specify the underlying type, scope pollution. ```c++ // Specifying underlying type as `unsigned int` enum class Color : unsigned int { Red = 0xff0000, Green = 0xff00, Blue = 0xff }; // `Red`/`Green` in `Alert` don't conflict with `Color` enum class Alert : bool { Red, Green }; Color c = Color::Red; ``` ### Attributes Attributes provide a universal syntax over `__attribute__(...)`, `__declspec`, etc. ```c++ // `noreturn` attribute indicates `f` doesn't return. [[ noreturn ]] void f() { throw "error"; } ``` ### constexpr Constant expressions are expressions evaluated by the compiler at compile-time. Only non-complex computations can be carried out in a constant expression. Use the `constexpr` specifier to indicate the variable, function, etc. is a constant expression. ```c++ constexpr int square(int x) { return x * x; } int square2(int x) { return x * x; } int a = square(2); // mov DWORD PTR [rbp-4], 4 int b = square2(2); // mov edi, 2 // call square2(int) // mov DWORD PTR [rbp-8], eax ``` `constexpr` values are those that the compiler can evaluate at compile-time: ```c++ const int x = 123; constexpr const int& y = x; // error -- constexpr variable `y` must be initialized by a constant expression ``` Constant expressions with classes: ```c++ struct Complex { constexpr Complex(double r, double i) : re(r), im(i) { } constexpr double real() { return re; } constexpr double imag() { return im; } private: double re; double im; }; constexpr Complex I(0, 1); ``` ### Delegating constructors TODO ## C++11 Library Features ### std::move TODO Definition of `std::move` (performing a move is nothing more than casting to an rvalue): ```c++ template typename remove_reference::type&& move(T&& arg) { return static_cast::type&&>(arg); } ```