- Partition features based on major C++ version into separate readme files.

- Fix fold expressions typo.
- Add a CONTRIBUTING.md file on how to effectively contribute.
This commit is contained in:
Anthony Calandra
2017-08-20 14:01:23 -04:00
parent c4431e1c38
commit db43d4b9c6
5 changed files with 1351 additions and 1 deletions

386
CPP17.md Normal file
View File

@@ -0,0 +1,386 @@
# C++17
## Overview
Many of these descriptions and examples come from various resources (see [Acknowledgements](#acknowledgements) section), summarized in my own words.
C++17 includes the following new language features:
- [template argument deduction for class templates](#template-argument-deduction-for-class-templates)
- [declaring non-type template parameters with auto](#declaring-non-type-template-parameters-with-auto)
- [folding expressions](#folding-expressions)
- [new rules for auto deduction from braced-init-list](#new-rules-for-auto-deduction-from-braced-init-list)
- [constexpr lambda](#constexpr-lambda)
- [lambda capture this by value](#lambda-capture-this-by-value)
- [inline variables](#inline-variables)
- [nested namespaces](#nested-namespaces)
- [structured bindings](#structured-bindings)
- [selection statements with initializer](#selection-statements-with-initializer)
- [constexpr if](#constexpr-if)
- [utf-8 character literals](#utf-8-character-literals)
- [direct-list-initialization of enums](#direct-list-initialization-of-enums)
C++17 includes the following new library features:
- [std::variant](#stdvariant)
- [std::optional](#stdoptional)
- [std::any](#stdany)
- [std::string_view](#stdstring_view)
- [std::invoke](#stdinvoke)
- [std::apply](#stdapply)
- [splicing for maps and sets](#splicing-for-maps-and-sets)
## C++17 Language Features
### Template argument deduction for class templates
Automatic template argument deduction much like how it's done for functions, but now including class constructors.
```c++
template <typename T = float>
struct MyContainer {
T val;
MyContainer() : val() {}
MyContainer(T val) : val(val) {}
// ...
};
MyContainer c1{ 1 }; // OK MyContainer<int>
MyContainer c2; // OK MyContainer<float>
```
### Declaring non-type template parameters with auto
Following the deduction rules of `auto`, while respecting the non-type template parameter list of allowable types[\*], template arguments can be deduced from the types of its arguments:
```c++
template <auto ... seq>
struct my_integer_sequence {
// Implementation here ...
};
// Explicitly pass type `int` as template argument.
auto seq = std::integer_sequence<int, 0, 1, 2>();
// Type is deduced to be `int`.
auto seq2 = my_integer_sequence<0, 1, 2>();
```
\* - For example, you cannot use a `double` as a template parameter type, which also makes this an invalid deduction using `auto`.
### Folding expressions
A fold expression performs a fold of a template parameter pack over a binary operator.
* An expression of the form `(... op e)` or `(e op ...)`, where `op` is a fold-operator and `e` is an unexpanded parameter pack, are called _unary folds_.
* An expression of the form `(e1 op ... op e2)`, where `op` are fold-operators, is called a _binary fold_. Either `e1` or `e2` are unexpanded parameter packs, but not both.
```c++
template<typename... Args>
bool logicalAnd(Args... args) {
// Binary folding.
return (true && ... && args);
}
bool b = true;
bool& b2 = b;
logicalAnd(b, b2, true); // == true
```
```c++
template<typename... Args>
auto sum(Args... args) {
// Unary folding.
return (... + args);
}
sum(1.0, 2.0f, 3); // == 6.0
```
### New rules for auto deduction from braced-init-list
Changes to `auto` deduction when used with the uniform initialization syntax. Previously, `auto x{ 3 };` deduces a `std::initializer_list<int>`, which now deduces to `int`.
```c++
auto x1{ 1, 2, 3 }; // error: not a single element
auto x2 = { 1, 2, 3 }; // decltype(x2) is std::initializer_list<int>
auto x3{ 3 }; // decltype(x3) is int
auto x4{ 3.0 }; // decltype(x4) is double
```
### constexpr lambda
Compile-time lambdas using `constexpr`.
```c++
auto identity = [] (int n) constexpr { return n; };
static_assert(identity(123) == 123);
```
```c++
constexpr auto add = [] (int x, int y) {
auto L = [=] { return x; };
auto R = [=] { return y; };
return [=] { return L() + R(); };
};
static_assert(add(1, 2)() == 3);
```
```c++
constexpr int addOne(int n) {
return [n] { return n + 1; }();
}
static_assert(addOne(1) == 2);
```
### Lambda capture `this` by value
Capturing `this` in a lambda's environment was previously reference-only. An example of where this is problematic is asynchronous code using callbacks that require an object to be available, potentially past its lifetime. `*this` (C++17) will now make a copy of the current object, while `this` (C++11) continues to capture by reference.
```c++
struct MyObj {
int value{ 123 };
auto getValueCopy() {
return [*this] { return value; };
}
auto getValueRef() {
return [this] { return value; };
}
};
MyObj mo;
auto valueCopy = mo.getValueCopy();
auto valueRef = mo.getValueRef();
mo.value = 321;
valueCopy(); // 123
valueRef(); // 321
```
### Inline variables
The inline specifier can be applied to variables as well as to functions. A variable declared inline has the same semantics as a function declared inline.
```c++
// Disassembly example using compiler explorer.
struct S { int x; };
inline S x1 = S{321}; // mov esi, dword ptr [x1]
// x1: .long 321
S x2 = S{123}; // mov eax, dword ptr [.L_ZZ4mainE2x2]
// mov dword ptr [rbp - 8], eax
// .L_ZZ4mainE2x2: .long 123
```
### Nested namespaces
Using the namespace resolution operator to create nested namespace definitions.
```c++
namespace A {
namespace B {
namespace C {
int i;
}
}
}
// vs.
namespace A::B::C {
int i;
}
```
### Structured bindings
A proposal for de-structuring initialization, that would allow writing `auto [ x, y, z ] = expr;` where the type of `expr` was a tuple-like object, whose elements would be bound to the variables `x`, `y`, and `z` (which this construct declares). _Tuple-like objects_ include `std::tuple`, `std::pair`, `std::array`, and aggregate structures.
```c++
using Coordinate = std::pair<int, int>;
Coordinate origin() {
return Coordinate{0, 0};
}
const auto [ x, y ] = origin();
x; // == 0
y; // == 0
```
### Selection statements with initializer
New versions of the `if` and `switch` statements which simplify common code patterns and help users keep scopes tight.
```c++
{
std::lock_guard<std::mutex> lk(mx);
if (v.empty()) v.push_back(val);
}
// vs.
if (std::lock_guard<std::mutex> lk(mx); v.empty()) {
v.push_back(val);
}
```
```c++
Foo gadget(args);
switch (auto s = gadget.status()) {
case OK: gadget.zip(); break;
case Bad: throw BadFoo(s.message());
}
// vs.
switch (Foo gadget(args); auto s = gadget.status()) {
case OK: gadget.zip(); break;
case Bad: throw BadFoo(s.message());
}
```
### constexpr if
Write code that is instantiated depending on a compile-time condition.
```c++
template <typename T>
constexpr bool isIntegral() {
if constexpr (std::is_integral<T>::value) {
return true;
} else {
return false;
}
}
static_assert(isIntegral<int>() == true);
static_assert(isIntegral<char>() == true);
static_assert(isIntegral<double>() == false);
struct S {};
static_assert(isIntegral<S>() == false);
```
### UTF-8 Character Literals
A character literal that begins with `u8` is a character literal of type `char`. The value of a UTF-8 character literal is equal to its ISO 10646 code point value.
```c++
char x = u8'x';
```
### Direct List Initialization of Enums
Enums can now be initialized using braced syntax.
```c++
enum byte : unsigned char {};
byte b{0}; // OK
byte c{-1}; // ERROR
byte d = byte{1}; // OK
byte e = byte{256}; // ERROR
```
## C++17 Library Features
### std::variant
The class template `std::variant` represents a type-safe `union`. An instance of `std::variant` at any given time holds a value of one of its alternative types (it's also possible for it to be valueless).
```c++
std::variant<int, double> v{ 12 };
std::get<int>(v); // == 12
std::get<0>(v); // == 12
v = 12.0;
std::get<double>(v); // == 12.0
std::get<1>(v); // == 12.0
```
### std::optional
The class template `std::optional` manages an optional contained value, i.e. a value that may or may not be present. A common use case for optional is the return value of a function that may fail.
```c++
std::optional<std::string> create(bool b) {
if (b) {
return "Godzilla";
} else {
return {};
}
}
create(false).value_or("empty"); // == "empty"
create(true).value(); // == "Godzilla"
// optional-returning factory functions are usable as conditions of while and if
if (auto str = create(true)) {
// ...
}
```
### std::any
A type-safe container for single values of any type.
```c++
std::any x{ 5 };
x.has_value() // == true
std::any_cast<int>(x) // == 5
std::any_cast<int&>(x) = 10;
std::any_cast<int>(x) // == 10
```
### std::string_view
A non-owning reference to a string. Useful for providing an abstraction on top of strings (e.g. for parsing).
```c++
// Regular strings.
std::string_view cppstr{ "foo" };
// Wide strings.
std::wstring_view wcstr_v{ L"baz" };
// Character arrays.
char array[3] = {'b', 'a', 'r'};
std::string_view array_v(array, sizeof array);
```
```c++
std::string str{ " trim me" };
std::string_view v{ str };
v.remove_prefix(std::min(v.find_first_not_of(" "), v.size()));
str; // == " trim me"
v; // == "trim me"
```
### std::invoke
Invoke a `Callable` object with parameters. Examples of `Callable` objects are `std::function` or `std::bind` where an object can be called similarly to a regular function.
```c++
template <typename Callable>
class Proxy {
Callable c;
public:
Proxy(Callable c): c(c) {}
template <class... Args>
decltype(auto) operator()(Args&&... args) {
// ...
return std::invoke(c, std::forward<Args>(args)...);
}
};
auto add = [] (int x, int y) {
return x + y;
};
Proxy<decltype(add)> p{ add };
p(1, 2); // == 3
```
### std::apply
Invoke a `Callable` object with a tuple of arguments.
```c++
auto add = [] (int x, int y) {
return x + y;
};
std::apply(add, std::make_tuple( 1, 2 )); // == 3
```
### Splicing for maps and sets
Moving nodes and merging containers without the overhead of expensive copies, moves, or heap allocations/deallocations.
Moving elements from one map to another:
```c++
std::map<int, string> src{ { 1, "one" }, { 2, "two" }, { 3, "buckle my shoe" } };
std::map<int, string> dst{ { 3, "three" } };
dst.insert(src.extract(src.find(1))); // Cheap remove and insert of { 1, "one" } from `src` to `dst`.
dst.insert(src.extract(2)); // Cheap remove and insert of { 2, "two" } from `src` to `dst`.
// dst == { { 1, "one" }, { 2, "two" }, { 3, "three" } };
```
Inserting an entire set:
```c++
std::set<int> src{1, 3, 5};
std::set<int> dst{2, 4, 5};
dst.merge(src);
// src == { 5 }
// dst == { 1, 2, 3, 4, 5 }
```
Inserting elements which outlive the container:
```c++
auto elementFactory() {
std::set<...> s;
s.emplace(...);
return s.extract(s.begin());
}
s2.insert(elementFactory());
```
Changing the key of a map element:
```c++
std::map<int, string> m{ { 1, "one" }, { 2, "two" }, { 3, "three" } };
auto e = m.extract(2);
e.key() = 4;
m.insert(std::move(e));
// m == { { 1, "one" }, { 3, "three" }, { 4, "two" } }
```
## Acknowledgements
* [cppreference](http://en.cppreference.com/w/cpp) - especially useful for finding examples and documentation of new library features.
* [C++ Rvalue References Explained](http://thbecker.net/articles/rvalue_references/section_01.html) - a great introduction I used to understand rvalue references, perfect forwarding, and move semantics.
* [clang](http://clang.llvm.org/cxx_status.html) and [gcc](https://gcc.gnu.org/projects/cxx-status.html)'s standards support pages. Also included here are the proposals for language/library features that I used to help find a description of, what it's meant to fix, and some examples.
* [Compiler explorer](https://godbolt.org/)
* [Scott Meyers' Effective Modern C++](https://www.amazon.com/Effective-Modern-Specific-Ways-Improve/dp/1491903996) - highly recommended book!
* [Jason Turner's C++ Weekly](https://www.youtube.com/channel/UCxHAlbZQNFU2LgEtiqd2Maw) - nice collection of C++-related videos.
* [What can I do with a moved-from object?](http://stackoverflow.com/questions/7027523/what-can-i-do-with-a-moved-from-object)
* [What are some uses of decltype(auto)?](http://stackoverflow.com/questions/24109737/what-are-some-uses-of-decltypeauto)
* And many more SO posts I'm forgetting...
## Author
Anthony Calandra
## Content Contributors
See: https://github.com/AnthonyCalandra/modern-cpp-features/graphs/contributors
## License
MIT