改进数据结构代码

This commit is contained in:
huihut
2019-06-04 23:18:46 +08:00
parent cd16b94024
commit 27dd18fbb8
9 changed files with 935 additions and 919 deletions

View File

@@ -8,7 +8,6 @@
#define OVERFLOW -1 #define OVERFLOW -1
#define SUCCESS 1 #define SUCCESS 1
#define UNSUCCESS 0 #define UNSUCCESS 0
#define dataNum 5 #define dataNum 5
int i = 0; int i = 0;
int dep = 0; int dep = 0;
@@ -17,33 +16,20 @@ char data[dataNum] = { 'A', 'B', 'C', 'D', 'E' };
typedef int Status; typedef int Status;
typedef char TElemType; typedef char TElemType;
// 二叉树结构
typedef struct BiTNode typedef struct BiTNode
{ {
TElemType data; TElemType data;
struct BiTNode *lchild, *rchild; struct BiTNode *lchild, *rchild;
}BiTNode, *BiTree; }BiTNode, *BiTree;
void InitBiTree(BiTree &T); //创建一颗空二叉 // 初始化一个空
BiTree MakeBiTree(TElemType e, BiTree L, BiTree R); //创建一颗二叉树T其中根节点的值为eL和R分别作为左子树和右子树
void DestroyBiTree(BiTree &T); //销毁二叉树
Status BiTreeEmpty(BiTree T); //对二叉树判空。若为空返回TRUE否则FALSE
Status BreakBiTree(BiTree &T, BiTree &L, BiTree &R); //将一颗二叉树T分解成根、左子树、右子树三部分
Status ReplaceLeft(BiTree &T, BiTree &LT); //替换左子树。若T非空则用LT替换T的左子树并用LT返回T的原有左子树
Status ReplaceRight(BiTree &T, BiTree &RT); //替换右子树。若T非空则用RT替换T的右子树并用RT返回T的原有右子树
int Leaves(BiTree T);
int Depth(BiTree T);
Status visit(TElemType e);
void UnionBiTree(BiTree &Ttemp);
//InitBiTree空二叉树是只有一个BiTree指针还是有一个结点但结点域为空
void InitBiTree(BiTree &T) void InitBiTree(BiTree &T)
{ {
T = NULL; T = NULL;
} }
// 构建二叉树
BiTree MakeBiTree(TElemType e, BiTree L, BiTree R) BiTree MakeBiTree(TElemType e, BiTree L, BiTree R)
{ {
BiTree t; BiTree t;
@@ -55,34 +41,30 @@ BiTree MakeBiTree(TElemType e, BiTree L, BiTree R)
return t; return t;
} }
// 访问结点
Status visit(TElemType e) Status visit(TElemType e)
{ {
printf("%c", e); printf("%c", e);
return OK; return OK;
} }
// 对二叉树T求叶子结点数目
int Leaves(BiTree T) //对二叉树T求叶子结点数目 int Leaves(BiTree T)
{ {
int l = 0, r = 0; int l = 0, r = 0;
if (NULL == T) return 0; if (NULL == T) return 0;
if (NULL == T->lchild && NULL == T->rchild) return 1; if (NULL == T->lchild && NULL == T->rchild) return 1;
//问题分解2个子问题
// 求左子树叶子数目 // 求左子树叶子数目
l = Leaves(T->lchild); l = Leaves(T->lchild);
// 求右子树叶子数目 // 求右子树叶子数目
r = Leaves(T->rchild); r = Leaves(T->rchild);
// 组合 // 组合
return r + l; return r + l;
} }
int depTraverse(BiTree T) //层次遍历dep是个全局变量,高度 // 层次遍历dep是个全局变量,高度
int depTraverse(BiTree T)
{ {
if (NULL == T) return ERROR; if (NULL == T) return ERROR;
@@ -91,20 +73,19 @@ int depTraverse(BiTree T) //层次遍历dep是个全局变量,高度
return dep + 1; return dep + 1;
} }
// 高度遍历lev是局部变量层次
void levTraverse(BiTree T, Status(*visit)(TElemType e), int lev) //高度遍历lev是局部变量层次 void levTraverse(BiTree T, Status(*visit)(TElemType e), int lev)
{ {
if (NULL == T) return; if (NULL == T) return;
visit(T->data); visit(T->data);
printf("的层次是%d\n", lev); printf("的层次是%d\n", lev);
levTraverse(T->lchild, visit, ++lev); levTraverse(T->lchild, visit, ++lev);
levTraverse(T->rchild, visit, lev); levTraverse(T->rchild, visit, lev);
} }
void InOrderTraverse(BiTree T, Status(*visit)(TElemType e), int &num) //num是个全局变量 // num是个全局变量
void InOrderTraverse(BiTree T, Status(*visit)(TElemType e), int &num)
{ {
if (NULL == T) return; if (NULL == T) return;
visit(T->data); visit(T->data);
@@ -115,12 +96,14 @@ void InOrderTraverse(BiTree T, Status(*visit)(TElemType e), int &num) //num是
InOrderTraverse(T->rchild, visit, num); InOrderTraverse(T->rchild, visit, num);
} }
// 二叉树判空
Status BiTreeEmpty(BiTree T) Status BiTreeEmpty(BiTree T)
{ {
if (NULL == T) return TRUE; if (NULL == T) return TRUE;
return FALSE; return FALSE;
} }
// 打断二叉树:置空二叉树的左右子树
Status BreakBiTree(BiTree &T, BiTree &L, BiTree &R) Status BreakBiTree(BiTree &T, BiTree &L, BiTree &R)
{ {
if (NULL == T) return ERROR; if (NULL == T) return ERROR;
@@ -131,6 +114,7 @@ Status BreakBiTree(BiTree &T, BiTree &L, BiTree &R)
return OK; return OK;
} }
// 替换左子树
Status ReplaceLeft(BiTree &T, BiTree &LT) Status ReplaceLeft(BiTree &T, BiTree &LT)
{ {
BiTree temp; BiTree temp;
@@ -141,6 +125,7 @@ Status ReplaceLeft(BiTree &T, BiTree &LT)
return OK; return OK;
} }
// 替换右子树
Status ReplaceRight(BiTree &T, BiTree &RT) Status ReplaceRight(BiTree &T, BiTree &RT)
{ {
BiTree temp; BiTree temp;
@@ -151,6 +136,7 @@ Status ReplaceRight(BiTree &T, BiTree &RT)
return OK; return OK;
} }
// 合并二叉树
void UnionBiTree(BiTree &Ttemp) void UnionBiTree(BiTree &Ttemp)
{ {
BiTree L = NULL, R = NULL; BiTree L = NULL, R = NULL;
@@ -160,10 +146,8 @@ void UnionBiTree(BiTree &Ttemp)
ReplaceRight(Ttemp, R); ReplaceRight(Ttemp, R);
} }
int main() int main()
{ {
BiTree T = NULL, Ttemp = NULL; BiTree T = NULL, Ttemp = NULL;
InitBiTree(T); InitBiTree(T);
@@ -178,7 +162,6 @@ int main()
Ttemp = T->lchild; Ttemp = T->lchild;
UnionBiTree(Ttemp); UnionBiTree(Ttemp);
Status(*visit1)(TElemType); Status(*visit1)(TElemType);
visit1 = visit; visit1 = visit;
int num = 0; int num = 0;
@@ -192,5 +175,6 @@ int main()
printf("高度是 %d\n", depTraverse(T)); printf("高度是 %d\n", depTraverse(T));
getchar();
return 0; return 0;
} }

View File

@@ -6,14 +6,17 @@
#define OVERFLOW -1 #define OVERFLOW -1
#define OK 1 #define OK 1
#define ERROR -1 #define ERROR -1
#define MAXNUM 9999 // 用于初始化哈希表的记录 key
typedef int Status; typedef int Status;
typedef int KeyType; typedef int KeyType;
// 哈希表中的记录类型
typedef struct { typedef struct {
KeyType key; KeyType key;
}RcdType; }RcdType;
// 哈希表类型
typedef struct { typedef struct {
RcdType *rcd; RcdType *rcd;
int size; int size;
@@ -21,28 +24,37 @@ typedef struct{
int *tag; int *tag;
}HashTable; }HashTable;
// 哈希表每次重建增长后的大小
int hashsize[] = { 11, 31, 61, 127, 251, 503 }; int hashsize[] = { 11, 31, 61, 127, 251, 503 };
int index = 0; int index = 0;
// 初始哈希表
Status InitHashTable(HashTable &H, int size) { Status InitHashTable(HashTable &H, int size) {
int i; int i;
H.rcd = (RcdType *)malloc(sizeof(RcdType)*size); H.rcd = (RcdType *)malloc(sizeof(RcdType)*size);
H.tag = (int *)malloc(sizeof(int)*size); H.tag = (int *)malloc(sizeof(int)*size);
if (NULL == H.rcd || NULL == H.tag) return OVERFLOW; if (NULL == H.rcd || NULL == H.tag) return OVERFLOW;
for (i = 0; i< size; i++) H.tag[i] = 0; KeyType maxNum = MAXNUM;
for (i = 0; i < size; i++) {
H.tag[i] = 0;
H.rcd[i].key = maxNum;
}
H.size = size; H.size = size;
H.count = 0; H.count = 0;
return OK; return OK;
} }
// 哈希函数:除留余数法
int Hash(KeyType key, int m) { int Hash(KeyType key, int m) {
return (3 * key) % m; return (3 * key) % m;
} }
void collision(int &p, int m){ //线性探测 // 处理哈希冲突:线性探测
void collision(int &p, int m) {
p = (p + 1) % m; p = (p + 1) % m;
} }
// 在哈希表中查询
Status SearchHash(HashTable H, KeyType key, int &p, int &c) { Status SearchHash(HashTable H, KeyType key, int &p, int &c) {
p = Hash(key, H.size); p = Hash(key, H.size);
int h = p; int h = p;
@@ -53,10 +65,10 @@ Status SearchHash(HashTable H, KeyType key, int &p, int &c) {
if (1 == H.tag[p] && key == H.rcd[p].key) return SUCCESS; if (1 == H.tag[p] && key == H.rcd[p].key) return SUCCESS;
else return UNSUCCESS; else return UNSUCCESS;
} }
void printHash(HashTable H) //打印哈希表 //打印哈希表
void printHash(HashTable H)
{ {
int i; int i;
printf("key : "); printf("key : ");
@@ -69,9 +81,10 @@ void printHash(HashTable H) //打印哈希表
printf("\n\n"); printf("\n\n");
} }
Status InsertHash(HashTable &H, KeyType key); //函数声明 // 函数声明:插入哈希表
Status InsertHash(HashTable &H, KeyType key);
//重构 // 重建哈希表
Status recreateHash(HashTable &H) { Status recreateHash(HashTable &H) {
RcdType *orcd; RcdType *orcd;
int *otag, osize, i; int *otag, osize, i;
@@ -86,8 +99,10 @@ Status recreateHash(HashTable &H){
InsertHash(H, orcd[i].key); InsertHash(H, orcd[i].key);
} }
} }
return OK;
} }
// 插入哈希表
Status InsertHash(HashTable &H, KeyType key) { Status InsertHash(HashTable &H, KeyType key) {
int p, c; int p, c;
if (UNSUCCESS == SearchHash(H, key, p, c)) { //没有相同key if (UNSUCCESS == SearchHash(H, key, p, c)) { //没有相同key
@@ -103,20 +118,19 @@ Status InsertHash(HashTable &H, KeyType key){
return UNSUCCESS; return UNSUCCESS;
} }
// 删除哈希表
Status DeleteHash(HashTable &H, KeyType key) { Status DeleteHash(HashTable &H, KeyType key) {
int p, c; int p, c;
if (SUCCESS == SearchHash(H, key, p, c)) { if (SUCCESS == SearchHash(H, key, p, c)) {
//删除代码 //删除代码
H.tag[p] = -1; H.tag[p] = -1;
H.count--; H.count--;
return SUCCESS; return SUCCESS;
} }
else return UNSUCCESS; else return UNSUCCESS;
} }
void main() int main()
{ {
printf("-----哈希表-----\n"); printf("-----哈希表-----\n");
HashTable H; HashTable H;
@@ -124,7 +138,6 @@ void main()
int size = 11; int size = 11;
KeyType array[8] = { 22, 41, 53, 46, 30, 13, 12, 67 }; KeyType array[8] = { 22, 41, 53, 46, 30, 13, 12, 67 };
KeyType key; KeyType key;
RcdType e;
//初始化哈希表 //初始化哈希表
printf("初始化哈希表\n"); printf("初始化哈希表\n");
@@ -139,7 +152,7 @@ void main()
} }
//删除哈希表 //删除哈希表
printf("删除哈希表\n"); printf("删除哈希表中key为12的元素\n");
int p, c; int p, c;
if (SUCCESS == DeleteHash(H, 12)) { if (SUCCESS == DeleteHash(H, 12)) {
printf("删除成功,此时哈希表为:\n"); printf("删除成功,此时哈希表为:\n");
@@ -147,15 +160,18 @@ void main()
} }
//查询哈希表 //查询哈希表
printf("查询哈希表\n"); printf("查询哈希表中key为67的元素\n");
if (SUCCESS == SearchHash(H, 67, p, c)) printf("查询成功\n"); if (SUCCESS == SearchHash(H, 67, p, c)) printf("查询成功\n");
//再次插入,测试哈希表的重 //再次插入,测试哈希表的重
printf("再次插入,测试哈希表的重\n"); printf("再次插入,测试哈希表的重\n");
KeyType array1[8] = { 27, 47, 57, 47, 37, 17, 93, 67 }; KeyType array1[8] = { 27, 47, 57, 47, 37, 17, 93, 67 };
for (i = 0; i <= 7; i++) { for (i = 0; i <= 7; i++) {
key = array1[i]; key = array1[i];
InsertHash(H, key); InsertHash(H, key);
printHash(H); printHash(H);
} }
getchar();
return 0;
} }

View File

@@ -29,18 +29,6 @@ typedef struct LNode {
struct LNode *next; struct LNode *next;
} LNode, *LinkList; } LNode, *LinkList;
Status InitList_L(LinkList &L);
Status DestroyList_L(LinkList &L);
Status ClearList_L(LinkList &L);
Status ListEmpty_L(LinkList L);
int ListLength_L(LinkList L);
LNode* Search_L(LinkList L, ElemType e);
LNode* NextElem_L(LNode *p);
Status InsertAfter_L(LNode *p, LNode *q);
Status DeleteAfter_L(LNode *p, ElemType &e);
void ListTraverse_L(LinkList L, Status(*visit)(ElemType e));
//创建包含n个元素的链表L元素值存储在data数组中 //创建包含n个元素的链表L元素值存储在data数组中
Status create(LinkList &L, ElemType *data, int n) { Status create(LinkList &L, ElemType *data, int n) {
LNode *p, *q; LNode *p, *q;
@@ -96,6 +84,7 @@ Status DeQueue_LQ(LinkList &L, ElemType &e) {
//遍历调用 //遍历调用
Status visit(ElemType e) { Status visit(ElemType e) {
printf("%d\t", e); printf("%d\t", e);
return OK;
} }
//遍历单链表 //遍历单链表
@@ -136,6 +125,7 @@ int main() {
DeQueue_LQ(L, e); DeQueue_LQ(L, e);
printf("出链表的元素为:%d\n", e); printf("出链表的元素为:%d\n", e);
printf("此时链表中元素为:\n"); printf("此时链表中元素为:\n");
//遍历单链表 //遍历单链表
ListTraverse_L(L, visit); ListTraverse_L(L, visit);
@@ -144,9 +134,11 @@ int main() {
EnQueue_LQ(L, e); EnQueue_LQ(L, e);
printf("入链表的元素为:%d\n", e); printf("入链表的元素为:%d\n", e);
printf("此时链表中元素为:\n"); printf("此时链表中元素为:\n");
//遍历单链表 //遍历单链表
ListTraverse_L(L, visit); ListTraverse_L(L, visit);
printf("\n"); printf("\n");
getchar();
return 0; return 0;
} }

View File

@@ -29,18 +29,6 @@ typedef struct LNode {
struct LNode *next; struct LNode *next;
} LNode, *LinkList; } LNode, *LinkList;
Status InitList_L(LinkList &L);
Status DestroyList_L(LinkList &L);
Status ClearList_L(LinkList &L);
Status ListEmpty_L(LinkList L);
int ListLength_L(LinkList L);
LNode* Search_L(LinkList L, ElemType e);
LNode* NextElem_L(LNode *p);
Status InsertAfter_L(LNode *p, LNode *q);
Status DeleteAfter_L(LNode *p, ElemType &e);
void ListTraverse_L(LinkList L, Status(*visit)(ElemType e));
//创建包含n个元素的链表L元素值存储在data数组中 //创建包含n个元素的链表L元素值存储在data数组中
Status create(LinkList &L, ElemType *data, int n) { Status create(LinkList &L, ElemType *data, int n) {
LNode *p, *q; LNode *p, *q;
@@ -150,6 +138,7 @@ int main() {
DeQueue_LQ(L, e); DeQueue_LQ(L, e);
printf("出链表的元素为:%d\n", e); printf("出链表的元素为:%d\n", e);
printf("此时链表中元素为:\n"); printf("此时链表中元素为:\n");
//遍历单链表 //遍历单链表
ListTraverse_L(L, visit); ListTraverse_L(L, visit);
@@ -158,9 +147,11 @@ int main() {
EnQueue_LQ(L, e); EnQueue_LQ(L, e);
printf("入链表的元素为:%d\n", e); printf("入链表的元素为:%d\n", e);
printf("此时链表中元素为:\n"); printf("此时链表中元素为:\n");
//遍历单链表 //遍历单链表
ListTraverse_L(L, visit); ListTraverse_L(L, visit);
printf("\n"); printf("\n");
getchar();
return 0; return 0;
} }

View File

@@ -121,12 +121,14 @@ private:
return false; return false;
} }
return delete_child(p->leftTree, data); return delete_child(p->leftTree, data);
} else if(p->value < data){ }
else if (p->value < data) {
if (p->rightTree == NIL) { if (p->rightTree == NIL) {
return false; return false;
} }
return delete_child(p->rightTree, data); return delete_child(p->rightTree, data);
} else if(p->value == data){ }
else if (p->value == data) {
if (p->rightTree == NIL) { if (p->rightTree == NIL) {
delete_one_child(p); delete_one_child(p);
return true; return true;
@@ -136,7 +138,8 @@ private:
delete_one_child(smallest); delete_one_child(smallest);
return true; return true;
}else{ }
else {
return false; return false;
} }
} }
@@ -159,7 +162,8 @@ private:
if (p->parent->leftTree == p) { if (p->parent->leftTree == p) {
p->parent->leftTree = child; p->parent->leftTree = child;
} else { }
else {
p->parent->rightTree = child; p->parent->rightTree = child;
} }
child->parent = p->parent; child->parent = p->parent;
@@ -167,7 +171,8 @@ private:
if (p->color == BLACK) { if (p->color == BLACK) {
if (child->color == RED) { if (child->color == RED) {
child->color = BLACK; child->color = BLACK;
} else }
else
delete_case(child); delete_case(child);
} }
@@ -191,18 +196,21 @@ private:
&& p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK) { && p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK) {
p->sibling()->color = RED; p->sibling()->color = RED;
delete_case(p->parent); delete_case(p->parent);
} else if(p->parent->color == RED && p->sibling()->color == BLACK }
else if (p->parent->color == RED && p->sibling()->color == BLACK
&& p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK) { && p->sibling()->leftTree->color == BLACK && p->sibling()->rightTree->color == BLACK) {
p->sibling()->color = RED; p->sibling()->color = RED;
p->parent->color = BLACK; p->parent->color = BLACK;
} else { }
else {
if (p->sibling()->color == BLACK) { if (p->sibling()->color == BLACK) {
if (p == p->parent->leftTree && p->sibling()->leftTree->color == RED if (p == p->parent->leftTree && p->sibling()->leftTree->color == RED
&& p->sibling()->rightTree->color == BLACK) { && p->sibling()->rightTree->color == BLACK) {
p->sibling()->color = RED; p->sibling()->color = RED;
p->sibling()->leftTree->color = BLACK; p->sibling()->leftTree->color = BLACK;
rotate_right(p->sibling()->leftTree); rotate_right(p->sibling()->leftTree);
} else if(p == p->parent->rightTree && p->sibling()->leftTree->color == BLACK }
else if (p == p->parent->rightTree && p->sibling()->leftTree->color == BLACK
&& p->sibling()->rightTree->color == RED) { && p->sibling()->rightTree->color == RED) {
p->sibling()->color = RED; p->sibling()->color = RED;
p->sibling()->rightTree->color = BLACK; p->sibling()->rightTree->color = BLACK;
@@ -214,7 +222,8 @@ private:
if (p == p->parent->leftTree) { if (p == p->parent->leftTree) {
p->sibling()->rightTree->color = BLACK; p->sibling()->rightTree->color = BLACK;
rotate_left(p->sibling()); rotate_left(p->sibling());
} else { }
else {
p->sibling()->leftTree->color = BLACK; p->sibling()->leftTree->color = BLACK;
rotate_right(p->sibling()); rotate_right(p->sibling());
} }
@@ -233,7 +242,8 @@ private:
p->leftTree = tmp; p->leftTree = tmp;
insert_case(tmp); insert_case(tmp);
} }
} else { }
else {
if (p->rightTree != NIL) if (p->rightTree != NIL)
insert(p->rightTree, data); insert(p->rightTree, data);
else { else {
@@ -258,22 +268,26 @@ private:
p->parent->color = p->uncle()->color = BLACK; p->parent->color = p->uncle()->color = BLACK;
p->grandparent()->color = RED; p->grandparent()->color = RED;
insert_case(p->grandparent()); insert_case(p->grandparent());
} else { }
else {
if (p->parent->rightTree == p && p->grandparent()->leftTree == p->parent) { if (p->parent->rightTree == p && p->grandparent()->leftTree == p->parent) {
rotate_left(p); rotate_left(p);
rotate_right(p); rotate_right(p);
p->color = BLACK; p->color = BLACK;
p->leftTree->color = p->rightTree->color = RED; p->leftTree->color = p->rightTree->color = RED;
} else if(p->parent->leftTree == p && p->grandparent()->rightTree == p->parent) { }
else if (p->parent->leftTree == p && p->grandparent()->rightTree == p->parent) {
rotate_right(p); rotate_right(p);
rotate_left(p); rotate_left(p);
p->color = BLACK; p->color = BLACK;
p->leftTree->color = p->rightTree->color = RED; p->leftTree->color = p->rightTree->color = RED;
} else if(p->parent->leftTree == p && p->grandparent()->leftTree == p->parent) { }
else if (p->parent->leftTree == p && p->grandparent()->leftTree == p->parent) {
p->parent->color = BLACK; p->parent->color = BLACK;
p->grandparent()->color = RED; p->grandparent()->color = RED;
rotate_right(p->parent); rotate_right(p->parent);
} else if(p->parent->rightTree == p && p->grandparent()->rightTree == p->parent) { }
else if (p->parent->rightTree == p && p->grandparent()->rightTree == p->parent) {
p->parent->color = BLACK; p->parent->color = BLACK;
p->grandparent()->color = RED; p->grandparent()->color = RED;
rotate_left(p->parent); rotate_left(p->parent);
@@ -317,7 +331,8 @@ public:
root->color = BLACK; root->color = BLACK;
root->leftTree = root->rightTree = NIL; root->leftTree = root->rightTree = NIL;
root->value = x; root->value = x;
} else { }
else {
insert(root, x); insert(root, x);
} }
} }
@@ -328,3 +343,35 @@ public:
private: private:
Node *root, *NIL; Node *root, *NIL;
}; };
int main()
{
cout << "---【红黑树】---" << endl;
// 创建红黑树
bst tree;
// 插入元素
tree.insert(2);
tree.insert(9);
tree.insert(-10);
tree.insert(0);
tree.insert(33);
tree.insert(-19);
// 顺序打印红黑树
cout << "插入元素后的红黑树:" << endl;
tree.inorder();
// 删除元素
tree.delete_value(2);
// 顺序打印红黑树
cout << "删除元素 2 后的红黑树:" << endl;
tree.inorder();
// 析构
tree.~bst();
getchar();
return 0;
}

View File

@@ -32,18 +32,6 @@ typedef struct {
int increment; int increment;
} SqList; } SqList;
Status InitList_Sq(SqList &L, int size, int inc); //初始化顺序表L
Status DestroyList_Sq(SqList &L); //销毁顺序表L
Status ClearList_Sq(SqList &L); //将顺序表L清空
Status ListEmpty_Sq(SqList L); //若顺序表L为空表则返回TRUE否则FALSE
int ListLength_Sq(SqList L); //返回顺序表L中元素个数
Status GetElem_Sq(SqList L, int i, ElemType &e); //用e返回顺序表L中第i个元素的值
int Search_Sq(SqList L, ElemType e); //在顺序表L顺序查找元素e成功时返回该元素在表中第一次出现的位置否则返回-1
Status ListTraverse_Sq(SqList L, Status(*visit)(ElemType e)); //遍历顺序表L依次对每个元素调用函数visit()
Status PutElem_Sq(SqList &L, int i, ElemType e); //将顺序表L中第i个元素赋值为e
Status Append_Sq(SqList &L, ElemType e); //在顺序表L表尾添加元素e
Status DeleteLast_Sq(SqList &L, ElemType &e); //删除顺序表L的表尾元素并用参数e返回其值
//初始化顺序表L //初始化顺序表L
Status InitList_Sq(SqList &L, int size, int inc) { Status InitList_Sq(SqList &L, int size, int inc) {
L.elem = (ElemType *)malloc(size * sizeof(ElemType)); L.elem = (ElemType *)malloc(size * sizeof(ElemType));
@@ -96,6 +84,7 @@ int Search_Sq(SqList L, ElemType e) {
//遍历调用 //遍历调用
Status visit(ElemType e) { Status visit(ElemType e) {
printf("%d\t", e); printf("%d\t", e);
return OK;
} }
//遍历顺序表L依次对每个元素调用函数visit() //遍历顺序表L依次对每个元素调用函数visit()
@@ -188,5 +177,6 @@ int main() {
if (OK == DestroyList_Sq(L)) printf("销毁成功\n"); if (OK == DestroyList_Sq(L)) printf("销毁成功\n");
else printf("销毁失败\n"); else printf("销毁失败\n");
getchar();
return 0; return 0;
} }

View File

@@ -32,15 +32,6 @@ typedef struct {
int increment; int increment;
} SqSrack; } SqSrack;
//函数声明
Status InitStack_Sq(SqSrack &S, int size, int inc); //初始化顺序栈
Status DestroyStack_Sq(SqSrack &S); //销毁顺序栈
Status StackEmpty_Sq(SqSrack S); //判断S是否空若空则返回TRUE否则返回FALSE
void ClearStack_Sq(SqSrack &S); //清空栈S
Status Push_Sq(SqSrack &S, ElemType e); //元素e压入栈S
Status Pop_Sq(SqSrack &S, ElemType &e); //栈S的栈顶元素出栈并用e返回
Status GetTop_Sq(SqSrack S, ElemType &e); //取栈S的栈顶元素并用e返回
//初始化顺序栈 //初始化顺序栈
Status InitStack_Sq(SqSrack &S, int size, int inc) { Status InitStack_Sq(SqSrack &S, int size, int inc) {
S.elem = (ElemType *)malloc(size * sizeof(ElemType)); S.elem = (ElemType *)malloc(size * sizeof(ElemType));
@@ -155,5 +146,6 @@ int main() {
ClearStack_Sq(S); ClearStack_Sq(S);
printf("已清空栈S\n"); printf("已清空栈S\n");
getchar();
return 0; return 0;
} }

View File

@@ -1649,6 +1649,8 @@ typedef struct BiTNode
#### 红黑树 #### 红黑树
[RedBlackTree.cpp](DataStructure/RedBlackTree.cpp)
##### 红黑树的特征是什么? ##### 红黑树的特征是什么?
1. 节点是红色或黑色。 1. 节点是红色或黑色。

View File

@@ -1662,6 +1662,8 @@ typedef struct BiTNode
#### 红黑树 #### 红黑树
[RedBlackTree.cpp](DataStructure/RedBlackTree.cpp)
##### 红黑树的特征是什么? ##### 红黑树的特征是什么?
1. 节点是红色或黑色。 1. 节点是红色或黑色。