Files
asmjit/db/exp.js
kobalicek 7596c6d035 [abi] AsmJit v1.18 - performance and memory footprint improvements
* Refactored the whole codebase to use snake_case convention to
    name functions and variables, including member variables.
    Class naming is unchanged and each starts with upper-case
    character. The intention of this change is to make the source
    code more readable and consistent across multiple projects
    where AsmJit is currently used.

  * Refactored support.h to make it more shareable across projects.

  * x86::Vec now inherits from UniVec

  * minor changes in JitAllocator and WriteScope in order to make
    the size of WriteScope smaller

  * added ZoneStatistics and Zone::statistics() getter

  * improved x86::EmitHelper to use tables instead of choose() and
    other mechanisms to pick between SSE and AVX instructions

  * Refactored the whole codebase to use snake_case convention for
    for functions names, function parameter names, struct members,
    and variables

  * Added a non-owning asmjit::Span<T> type and use into public API
    to hide the usage of ZoneVector in CodeHolder, Builder, and
    Compiler. Users now only get Span (with data and size), which
    doesn't require users to know about ZoneVector

  * Removed RAWorkId from RATiedReg in favor of RAWorkReg*

  * Removed GEN from LiveInfo as it's not needed by CFG construction
    to save memory (GEN was merged with LIVE-IN bits). The remaining
    LIVE-IN, LIVE-OUT, and KILL bits are enough, however KILL bits may
    be removed in the future as KILL bits are not needed after LIVE-IN
    and LIVE-OUT converged

  * Optimized the representation of LIVE-IN, LIVE-OUT, and KILL bits
    per block. Now only registers that live across multiple basic
    blocks are included here, which means that virtual registers that
    only live in a single block are not included and won't be overhead
    during liveness analysis. This optimization alone can make liveness
    analysis 90% faster depending on the code generated (more virtual
    registers that only live in a single basic block -> more gains)

  * Optimized building liveness information bits per block. The new
    code uses an optimized algorithm to prevent too many traversals
    and uses a more optimized code for a case in which not too many
    registers are used (it avoids array operations if the number of
    all virtual registers within the function fits a single BitWord)

  * Optimized code that computes which virtual register is only used
    in a single basic block - this aims to optimize register allocator
    in the future by using a designed code path for allocating regs
    only used in a single basic block

  * Reduced the information required for each live-span, which is used
    by bin-packing. Now the struct is 8 bytes, which is good for a lot
    of optimizations C++ compiler can do

  * Added UniCompiler (ujit) which can be used to share code paths
    between X86, X86_64, and AArch64 code generation (experimental).
2025-09-06 13:44:34 +02:00

761 lines
20 KiB
JavaScript

// This file is part of AsmJit project <https://asmjit.com>
//
// See <asmjit/core.h> or LICENSE.md for license and copyright information
// SPDX-License-Identifier: Zlib
(function($scope, $as) {
"use strict";
// Supported Operators
// -------------------
const kUnaryOperators = {
"-": {prec: 3, rtl : 1, emit: "-@1" },
"~": {prec: 3, rtl : 1, emit: "~@1" },
"!": {prec: 3, rtl : 1, emit: "!@1" }
};
const kBinaryOperators = {
"*" : { prec: 5, rtl : 0, emit: "@1 * @2" },
"/" : { prec: 5, rtl : 0, emit: "@1 / @2" },
"%" : { prec: 5, rtl : 0, emit: "@1 % @2" },
"+" : { prec: 6, rtl : 0, emit: "@1 + @2" },
"-" : { prec: 6, rtl : 0, emit: "@1 - @2" },
">>": { prec: 7, rtl : 0, emit: "@1 >> @2" },
"<<": { prec: 7, rtl : 0, emit: "@1 << @2" },
"<" : { prec: 9, rtl : 0, emit: "@1 < @2" },
">" : { prec: 9, rtl : 0, emit: "@1 > @2" },
"<=": { prec: 9, rtl : 0, emit: "@1 <= @2" },
">=": { prec: 9, rtl : 0, emit: "@1 >= @2" },
"==": { prec:10, rtl : 0, emit: "@1 == @2" },
"!=": { prec:10, rtl : 0, emit: "@1 != @2" },
"&" : { prec:11, rtl : 0, emit: "@1 & @2" },
"^" : { prec:12, rtl : 0, emit: "@1 ^ @2" },
"|" : { prec:13, rtl : 0, emit: "@1 | @2" },
"&&": { prec:14, rtl : 0, emit: "@1 && @2" },
"||": { prec:15, rtl : 0, emit: "@1 || @2" },
"?" : { prec:16, rtl : 0, emit: "@1 ? @2" },
":" : { prec:16, rtl : 0, emit: "@1 : @2" }
};
const kMaxOperatorLen = 4;
function rightAssociate(info, bPrec) {
return info.prec > bPrec || (info.prec === bPrec && info.rtl);
}
// Expression Error
// ----------------
// Contains `message` and `position` members. If the `position` is not `-1` then it is
// a zero-based index, which points to a first character of the token near the error.
class ExpressionError extends Error {
constructor(message, position) {
super(message);
this.name = "ExpressionError";
this.message = message;
this.position = position != null ? position : -1;
}
}
function throwTokenizerError(token) {
throw new ExpressionError(`Unexpected token '${token.data}'`, token.position);
}
function throwExpressionError(message, position) {
throw new ExpressionError(message, position);
}
// Expression Tree
// ---------------
function mustEnclose(node) {
return node.isUnary() ? node.child.isOperator() : node.isBinary() ? true : false;
}
class ExpNode {
constructor(type) { this.type = type; }
isImm() { return this.type === "imm"; }
isVar() { return this.type === "var"; }
isCall() { return this.type === "call"; }
isUnary() { return this.type === "unary"; }
isBinary() { return this.type === "binary"; }
isOperator() { return this.type === "unary" || this.type === "binary"; }
info() { return null; }
clone() { throw new Error("ExpNode.clone() must be overridden"); }
evaluate(ctx) { throw new Error("ExpNode.evaluate() must be overridden"); }
toString(ctx) { throw new Error("ExpNode.toString() must be overridden"); }
}
class ImmNode extends ExpNode {
constructor(imm) {
super("imm");
this.imm = imm || 0;
}
clone() { return new ImmNode(this.imm); }
evaluate(ctx) { return this.imm; }
toString(ctx) { return ctx ? ctx.stringifyImmediate(this.imm) : String(this.imm); }
}
class VarNode extends ExpNode {
constructor(name) {
super("var");
this.name = name || "";
}
clone() { return new VarNode(this.name); }
evaluate(ctx) { return ctx.variable(this.name); }
toString(ctx) { return ctx ? ctx.stringifyVariable(this.name) : String(this.name); }
}
class CallNode extends ExpNode {
constructor(name, args) {
super("call");
this.name = name || "";
this.args = args || [];
}
clone() {
return new CallNode(this.name, this.args.map(function(arg) { return arg.clone(); }));
}
evaluate(ctx) {
const evaluatedArgs = this.args.map(function(arg) { return arg.evaluate(ctx); });
return ctx.function(this.name, evaluatedArgs);
}
toString(ctx) {
if (this.name === "$bit") {
return `((${this.args[0]} >> ${this.args[1]}) & 1)`;
}
else {
let argsCode = this.args.map(function(arg) { return arg.toString(ctx); }).join(", ");
if (ctx)
return `${ctx.stringifyFunction(this.name)}(${argsCode})`;
else
return `${this.name}(${argsCode})`;
}
}
}
class UnaryNode extends ExpNode {
constructor(op, child) {
if (!Object.hasOwn(kUnaryOperators, op))
throw new Error(`Invalid unary operator '${op}`);
super("unary");
this.op = op;
this.child = child || null;
}
info() {
return kUnaryOperators[this.op];
}
clone() {
return new UnaryNode(this.op, this.left ? this.left.clone() : null);
}
evaluate(ctx) {
const val = this.child.evaluate(ctx);
switch (this.op) {
case "-": return (-val);
case "~": return (~val);
case "!": return (val ? 0 : 1);
default : return ctx.unary(this.op, val);
}
}
toString(ctx) {
return this.info().emit.replace(/@1/g, () => {
const node = this.child;
const code = node.toString(ctx);
return mustEnclose(node) ? `(${code})` : code;
});
}
}
class BinaryNode extends ExpNode {
constructor(op, left, right) {
if (!Object.hasOwn(kBinaryOperators, op))
throw new Error(`Invalid binary operator '${op}`);
super("binary");
this.op = op || "";
this.left = left || null;
this.right = right || null;
}
info() {
return kBinaryOperators[this.op];
}
clone() {
return new BinaryNode(this.op, this.left ? this.left.clone() : null, this.right ? this.right.clone() : null);
}
evaluate(ctx) {
const left = this.left.evaluate(ctx);
const right = this.right.evaluate(ctx);
switch (this.op) {
case "-" : return left - right;
case "+" : return left + right;
case "*" : return left * right;
case "/" : return (left / right)|0;
case "%" : return (left % right)|0;
case "&" : return left & right;
case "|" : return left | right;
case "^" : return left ^ right;
case "<<": return left << right;
case ">>": return left >> right;
case "==": return left == right ? 1 : 0;
case "!=": return left != right ? 1 : 0;
case "<" : return left < right ? 1 : 0;
case "<=": return left <= right ? 1 : 0;
case ">" : return left > right ? 1 : 0;
case ">=": return left >= right ? 1 : 0;
case "&&": return left && right ? 1 : 0;
case "||": return left || right ? 1 : 0;
default : return ctx.binary(this.op, left, right);
}
}
toString(ctx) {
return this.info().emit.replace(/@[1-2]/g, (p) => {
const node = p === "@1" ? this.left : this.right;
const code = node.toString(ctx);
return mustEnclose(node) ? `(${code})` : code;
});
}
}
function Imm(imm) { return new ImmNode(imm); }
function Var(name) { return new VarNode(name); }
function Call(name, args) { return new CallNode(name, args); }
function Unary(op, child) { return new UnaryNode(op, child); }
function Binary(op, left, right) { return new BinaryNode(op, left, right); }
function Negate(child) { return Unary("-", child); }
function BitNot(child) { return Unary("~", child); }
function Add(left, right) { return Binary("+", left, right); }
function Sub(left, right) { return Binary("-", left, right); }
function Mul(left, right) { return Binary("*", left, right); }
function Div(left, right) { return Binary("/", left, right); }
function Mod(left, right) { return Binary("%", left, right); }
function Shl(left, right) { return Binary("<<", left, right); }
function Shr(left, right) { return Binary(">>", left, right); }
function BitAnd(left, right) { return Binary("&", left, right); }
function BitOr(left, right) { return Binary("|", left, right); }
function BitXor(left, right) { return Binary("^", left, right); }
function Eq(left, right) { return Binary("==", left, right); }
function Ne(left, right) { return Binary("!=", left, right); }
function Lt(left, right) { return Binary("<", left, right); }
function Le(left, right) { return Binary("<=", left, right); }
function Gt(left, right) { return Binary(">", left, right); }
function Ge(left, right) { return Binary(">=", left, right); }
function And(left, right) { return Binary("&&", left, right); }
function Or(left, right) { return Binary("||", left, right); }
// Expression Tokenizer
// --------------------
const kCharNone = 0; // '_' - Character category - Invalid or <end>.
const kCharSpace = 1; // 'S' - Character category - Space.
const kCharAlpha = 2; // 'A' - Character category - Alpha [A-Za-z_].
const kCharDigit = 3; // 'D' - Character category - Digit [0-9].
const kCharPunct = 4; // '$' - Character category - Punctuation.
const Category = (function(_, S, A, D, $) {
const Table = [
_,_,_,_,_,_,_,_,_,S,S,S,S,S,_,_, // 000-015 |......... ..|
_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_, // 016-031 |................|
S,$,$,$,$,$,$,$,$,$,$,$,$,$,$,$, // 032-047 | !"#$%&'()*+,-./|
D,D,D,D,D,D,D,D,D,D,$,$,$,$,$,$, // 048-063 |0123456789:;<=>?|
$,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A, // 064-079 |@ABCDEFGHIJKLMNO|
A,A,A,A,A,A,A,A,A,A,A,$,$,$,$,A, // 080-095 |PQRSTUVWXYZ[\]^_|
$,A,A,A,A,A,A,A,A,A,A,A,A,A,A,A, // 096-111 |`abcdefghijklmno|
A,A,A,A,A,A,A,A,A,A,A,$,$,$,$,_, // 112-127 |pqrstuvwxyz{|}~ |
_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_, // 128-143 |................|
_,_,_,_,_,_,_,_,_,_,_,_,_,_,_,_ // 144-159 |................|
];
const kTableLength = Table.length;
return function(c) {
if (c < kTableLength)
return Table[c];
return kCharNone;
};
})(kCharNone, kCharSpace, kCharAlpha, kCharDigit, kCharPunct);
const kTokenNone = 0;
const kTokenPunct = 1;
const kTokenIdent = 2;
const kTokenValue = 3;
function newToken(type, position, data, value) {
return {
type : type, // Token type, see `kToken...`.
position: position, // Token position in expression's source.
data : data, // Token data (content) as string.
value : value // Token value (only if the token is a value).
};
}
const NoToken = newToken(kTokenNone, -1, "<end>", null);
// Must be reset before it can be used, use `RegExp.lastIndex`.
const reNumValue = /(?:(?:\d*\.\d+|\d+)(?:[E|e][+|-]?\d+)?)/g;
function parseHex(source, from) {
let i = from;
let number = 0;
while (i < source.length) {
let c = source.charCodeAt(i);
let n = 0;
if (c >= '0'.charCodeAt(0) && c <= '9'.charCodeAt(0)) {
n = c - '0'.charCodeAt(0);
}
else if (c >= 'a'.charCodeAt(0) && c <= 'f'.charCodeAt(0)) {
n = c - 'a'.charCodeAt(0) + 10;
}
else if (c >= 'A'.charCodeAt(0) && c <= 'F'.charCodeAt(0)) {
n = c - 'A'.charCodeAt(0) + 10;
}
else if (c >= 'g'.charCodeAt(0) && c <= 'z'.charCodeAt(0) || c >= 'g'.charCodeAt(0) && c <= 'Z'.charCodeAt(0)) {
throwExpressionError(`Invalid hex number 0x${source.substring(from, i + 1)}`);
}
else {
break;
}
number = (number << 4) | n;
i++;
}
if (i === from)
throwExpressionError(`Invalid number starting with 0x`);
return {
number: number,
end: i
};
}
function tokenize(source) {
const len = source.length;
const tokens = [];
let i = 0, j = 0; // Current index in `source` and temporary.
let start = 0; // Current token start position.
let data = ""; // Current token data (content) as string.
let c, cat; // Current character code and category.
while (i < len) {
c = source.charCodeAt(i);
cat = Category(c);
if (cat === kCharSpace) {
i++;
}
else if (cat === kCharDigit) {
const n = tokens.length - 1;
// Hex number.
if (c === '0'.charCodeAt(0) && i + 1 < len && source.charCodeAt(i + 1) === 'x'.charCodeAt(0)) {
const status = parseHex(source, i + 2);
tokens.push(newToken(kTokenValue, i, source.substring(i, status.end), status.number));
i = status.end;
}
else {
if (n >= 0 && tokens[n].data === "." && source[i - 1] === ".") {
tokens.length = n;
i--;
}
reNumValue.lastIndex = i;
data = reNumValue.exec(source)[0];
tokens.push(newToken(kTokenValue, i, data, parseFloat(data)));
i += data.length;
}
}
else if (cat === kCharAlpha) {
start = i;
while (++i < len && ((cat = Category(source.charCodeAt(i))) === kCharAlpha || cat === kCharDigit))
continue;
data = source.substring(start, i);
tokens.push(newToken(kTokenIdent, start, data, null));
}
else if (cat === kCharPunct) {
start = i;
while (++i < len && Category(source.charCodeAt(i)) === kCharPunct)
continue;
data = source.substring(start, i);
do {
for (j = Math.min(i - start, kMaxOperatorLen); j > 0; j--) {
const part = source.substr(start, j);
if (Object.hasOwn(kUnaryOperators, part) || Object.hasOwn(kBinaryOperators, part) || j === 1) {
tokens.push(newToken(kTokenPunct, start, part, null));
start += j;
break;
}
}
} while (start < i);
}
else {
throwExpressionError(`Unrecognized character '0x${c.toString(16)}'`, i);
}
}
return tokens;
}
// Expression Parser
// -----------------
class Parser {
constructor(tokens) {
this.tokens = tokens;
this.tIndex = 0;
}
peek() { return this.tIndex < this.tokens.length ? this.tokens[this.tIndex ] : NoToken; }
next() { return this.tIndex < this.tokens.length ? this.tokens[this.tIndex++] : NoToken; }
skip() { this.tIndex++; return this; }
back(token) { this.tIndex -= +(token !== NoToken); return this; }
parse() {
// The root expression cannot be empty.
let token = this.peek();
if (token === NoToken)
throwExpressionError("Expression cannot be empty", 0);
const exp = this.parseExpression();
// The root expression must reach the end of the input.
token = this.peek();
if (token !== NoToken)
throwTokenizerError(token);
return exp;
}
parseExpression() {
const stack = [];
let value = null;
let token = null;
for (;;) {
// The only case of value not being `null` is after ternary-if. In that
// case the value was already parsed so we want to skip this section.
if (value === null) {
let unaryFirst = null;
let unaryLast = null;
token = this.next();
// Parse a possible unary operator(s).
if (token.type === kTokenPunct) {
do {
const opName = token.data;
const opInfo = kUnaryOperators[opName];
if (!opInfo)
break;
const node = Unary(opName);
if (unaryLast)
unaryLast.child = node;
else
unaryFirst = node;
unaryLast = node;
token = this.next();
} while (token.type === kTokenPunct);
}
// Parse a value, variable, function call, or nested expression.
if (token.type === kTokenValue) {
value = Imm(token.value);
}
else if (token.type === kTokenIdent) {
const name = token.data;
const after = this.peek();
if (after.data === "(")
value = this.parseCall(token.data);
else if (after.data === "[")
value = this.parseBitAccess(token.data);
else
value = Var(name);
}
else if (token.data === "(") {
value = this.parseExpression();
token = this.next();
if (token.data !== ")")
throwTokenizerError(token);
}
else {
throwTokenizerError(token);
}
// Replace the value with the top-level unary operator, if parsed.
if (unaryFirst) {
unaryLast.child = value;
value = unaryFirst;
}
}
// Parse a possible binary operator - the loop must repeat, if present.
token = this.peek();
if (token.type === kTokenPunct && Object.hasOwn(kBinaryOperators, token.data)) {
const opName = token.data;
if (opName === ":")
break;
// Consume the token.
this.skip();
const bNode = Binary(opName, null, null);
if (!stack.length) {
bNode.left = value;
stack.push(bNode);
}
else {
let aNode = stack.pop();
let aPrec = aNode.info().prec;
let bPrec = bNode.info().prec;
if (aPrec > bPrec) {
aNode.right = bNode;
bNode.left = value;
stack.push(aNode, bNode);
}
else {
aNode.right = value;
// Advance to the top-most op that has less/equal precedence than `bPrec`.
while (stack.length) {
if (rightAssociate(aNode.info(), bPrec))
break;
aNode = stack.pop();
}
if (!stack.length && !rightAssociate(aNode.info(), bPrec)) {
bNode.left = aNode;
stack.push(bNode);
}
else {
const tmp = aNode.right;
aNode.right = bNode;
bNode.left = tmp;
stack.push(aNode, bNode);
}
}
}
// Parse "<cond> {ternary-if} <taken> {ternary-else} <not-taken>".
if (opName === "?") {
const ternLeft = this.parseExpression();
const ternTok = this.next();
if (ternTok.data !== ":")
throwExpressionError(`Unterminated ternary if '${token.data}'`, token.position);
const ternRight = this.parseExpression();
value = Binary(opName, info, ternLeft, ternRight);
}
else {
value = null;
}
continue;
}
break;
}
if (value === null)
throwExpressionError("Invalid expression");
if (stack.length !== 0) {
stack[stack.length - 1].right = value;
value = stack[0];
}
return value;
}
parseCall(name) {
const args = [];
let token = this.next();
if (token.data !== "(")
throwTokenizerError(token);
for (;;) {
token = this.peek();
if (token.data === ")")
break;
if (args.length !== 0) {
if (token.data !== ",")
throwTokenizerError(token);
this.skip();
}
args.push(this.parseExpression());
}
this.skip();
return Call(name, args);
}
parseBitAccess(name) {
let token = this.next();
if (token.data !== "[")
throwTokenizerError(token);
token = this.next();
if (token.type != kTokenValue)
throwTokenizerError(token);
const index = token.value;
token = this.next();
if (token.data !== "]")
throwTokenizerError(token);
return Call("$bit", [Var(name), index]);
}
}
function parse(source) {
const tokens = tokenize(source);
return new Parser(tokens).parse();
}
// Expression Visitors
// -------------------
class Visitor {
visit(node) {
switch (node.type) {
case "imm":
case "var": {
break;
}
case "call": {
for (let arg of node.args)
this.visit(arg);
break;
}
case "unary": {
if (node.child)
this.visit(node.child);
break;
}
case "binary": {
if (node.left)
this.visit(node.left);
if (node.right)
this.visit(node.right);
break;
}
default: {
throw new Error(`Visitor.visit(): Unknown node type '${node.type}'`);
}
}
}
}
class Collector extends Visitor {
constructor(nodeType, dst) {
super();
this.dict = dst || Object.create(null);
this.nodeType = nodeType;
}
visit(node) {
if (node.type === this.nodeType) {
if (Object.hasOwn(this.dict, node.name))
this.dict[node.name]++;
else
this.dict[node.name] = 1;
}
super.visit(node);
}
}
function collectVars(node, dst) {
const collector = new Collector("var", dst);
collector.visit(node)
return collector.dict;
}
function collectCalls(node, dst) {
const collector = new Collector("call", dst);
collector.visit(node)
return collector.dict;
}
// Exports
// -------
$scope[$as] = {
Imm: Imm,
Var: Var,
Call: Call,
Unary: Unary,
Binary: Binary,
Negate: Negate,
BitNot: BitNot,
Add: Add,
Sub: Sub,
Mul: Mul,
Div: Div,
Mod: Mod,
Shl: Shl,
Shr: Shr,
BitAnd: BitAnd,
BitOr: BitOr,
BitXor: BitXor,
Eq: Eq,
Ne: Ne,
Lt: Lt,
Le: Le,
Gt: Gt,
Ge: Ge,
And: And,
Or: Or,
Visitor: Visitor,
ExpressionError: ExpressionError,
parse: parse,
collectVars: collectVars,
collectCalls: collectCalls
};
}).apply(this, typeof module === "object" && module && module.exports
? [module, "exports"] : [this.asmdb || (this.asmdb = {}), "exp"]);