Files
MLP/src/MLPTest.cpp
2016-11-03 21:57:35 +00:00

321 lines
11 KiB
C++

//============================================================================
// Name : Main.cpp
// Author : David Nogueira
//============================================================================
#include "MLP.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include <algorithm>
#include "microunit.h"
UNIT(LearnAND) {
std::cout << "Train AND function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 0.0 } },
{ { 0, 1 },{ 0.0 } },
{ { 1, 0 },{ 0.0 } },
{ { 1, 1 },{ 1.0 } },
{ { 1, 1 },{ 1.0 } },
{ { 1, 1 },{ 1.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp(num_features, num_outputs, 1, 2, false);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0] > 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNAND) {
std::cout << "Train NAND function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 1.0 } },
{ { 0, 1 },{ 1.0 } },
{ { 1, 0 },{ 1.0 } },
{ { 1, 1 },{ 0.0 } },
{ { 1, 1 },{ 0.0 } },
{ { 1, 1 },{ 0.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp(num_features, num_outputs, 1, 2, false);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0] > 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnOR) {
std::cout << "Train OR function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 0.0 } },
{ { 0, 0 },{ 0.0 } },
{ { 0, 0 },{ 0.0 } },
{ { 0, 1 },{ 1.0 } },
{ { 1, 0 },{ 1.0 } },
{ { 1, 1 },{ 1.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp(num_features, num_outputs, 1, 2, false);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0] > 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNOR) {
std::cout << "Train NOR function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 1.0 } },
{ { 0, 0 },{ 1.0 } },
{ { 0, 0 },{ 1.0 } },
{ { 0, 1 },{ 0.0 } },
{ { 1, 0 },{ 0.0 } },
{ { 1, 1 },{ 0.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp(num_features, num_outputs, 1, 2, false);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0] > 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnXOR) {
std::cout << "Train XOR function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 0.0 } },
{ { 0, 1 },{ 1.0 } },
{ { 1, 0 },{ 1.0 } },
{ { 1, 1 },{ 0.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp(num_features, num_outputs, 1, 2, false);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 50'000, 0.25);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0] > 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNOT) {
std::cout << "Train NOT function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0},{ 1.0 } },
{ { 1},{ 0.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp(num_features, num_outputs, 1, 2, false);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0] > 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnX1) {
std::cout << "Train X1 function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 0.0 } },
{ { 0, 1 },{ 0.0 } },
{ { 1, 0 },{ 1.0 } },
{ { 1, 1 },{ 1.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp(num_features, num_outputs, 1, 2, false);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0] > 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnX2) {
std::cout << "Train X2 function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 0.0 } },
{ { 0, 1 },{ 1.0 } },
{ { 1, 0 },{ 0.0 } },
{ { 1, 1 },{ 1.0 } }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize();
MLP my_mlp(num_features, num_outputs, 1, 2, false);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0] > 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
int main() {
microunit::UnitTester::Run();
return 0;
}