Files
MLP/src/MLP.cpp
rluna 72f2688c7d finished of correcting "int" to "size_t" to avoid nasty errors and
implement a test for SetWeights() function
2019-01-04 17:47:13 +01:00

300 lines
9.3 KiB
C++

//============================================================================
// Name : MLP.cpp
// Author : David Nogueira
//============================================================================
#include "MLP.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include <algorithm>
#include "easylogging++.h"
//desired call sintax : MLP({64*64,20,4}, {"sigmoid", "linear"},
MLP::MLP(const std::vector<uint64_t> & layers_nodes,
const std::vector<std::string> & layers_activfuncs,
bool use_constant_weight_init,
double constant_weight_init) {
assert(layers_nodes.size() >= 2);
assert(layers_activfuncs.size() + 1 == layers_nodes.size());
CreateMLP(layers_nodes,
layers_activfuncs,
use_constant_weight_init,
constant_weight_init);
};
MLP::MLP(const std::string & filename) {
LoadMLPNetwork(filename);
}
MLP::~MLP() {
m_num_inputs = 0;
m_num_outputs = 0;
m_num_hidden_layers = 0;
m_layers_nodes.clear();
m_layers.clear();
};
void MLP::CreateMLP(const std::vector<uint64_t> & layers_nodes,
const std::vector<std::string> & layers_activfuncs,
bool use_constant_weight_init,
double constant_weight_init) {
m_layers_nodes = layers_nodes;
m_num_inputs = m_layers_nodes[0];
m_num_outputs = m_layers_nodes[m_layers_nodes.size() - 1];
m_num_hidden_layers = m_layers_nodes.size() - 2;
for (size_t i = 0; i < m_layers_nodes.size() - 1; i++) {
m_layers.emplace_back(Layer(m_layers_nodes[i],
m_layers_nodes[i + 1],
layers_activfuncs[i],
use_constant_weight_init,
constant_weight_init));
}
};
void MLP::SaveMLPNetwork(const std::string & filename)const {
FILE * file;
file = fopen(filename.c_str(), "wb");
fwrite(&m_num_inputs, sizeof(m_num_inputs), 1, file);
fwrite(&m_num_outputs, sizeof(m_num_outputs), 1, file);
fwrite(&m_num_hidden_layers, sizeof(m_num_hidden_layers), 1, file);
if (!m_layers_nodes.empty())
fwrite(&m_layers_nodes[0], sizeof(m_layers_nodes[0]), m_layers_nodes.size(), file);
for (size_t i = 0; i < m_layers.size(); i++) {
m_layers[i].SaveLayer(file);
}
fclose(file);
};
void MLP::LoadMLPNetwork(const std::string & filename) {
m_layers_nodes.clear();
m_layers.clear();
FILE * file;
file = fopen(filename.c_str(), "rb");
fread(&m_num_inputs, sizeof(m_num_inputs), 1, file);
fread(&m_num_outputs, sizeof(m_num_outputs), 1, file);
fread(&m_num_hidden_layers, sizeof(m_num_hidden_layers), 1, file);
m_layers_nodes.resize(m_num_hidden_layers + 2);
if (!m_layers_nodes.empty())
fread(&m_layers_nodes[0], sizeof(m_layers_nodes[0]), m_layers_nodes.size(), file);
m_layers.resize(m_layers_nodes.size() - 1);
for (size_t i = 0; i < m_layers.size(); i++) {
m_layers[i].LoadLayer(file);
}
fclose(file);
};
void MLP::GetOutput(const std::vector<double> &input,
std::vector<double> * output,
std::vector<std::vector<double>> * all_layers_activations) const {
assert(input.size() == m_num_inputs);
int temp_size;
if (m_num_hidden_layers == 0)
temp_size = m_num_outputs;
else
temp_size = m_layers_nodes[1];
std::vector<double> temp_in(m_num_inputs, 0.0);
std::vector<double> temp_out(temp_size, 0.0);
temp_in = input;
for (size_t i = 0; i < m_layers.size(); ++i) {
if (i > 0) {
//Store this layer activation
if (all_layers_activations != nullptr)
all_layers_activations->emplace_back(std::move(temp_in));
temp_in.clear();
temp_in = temp_out;
temp_out.clear();
temp_out.resize(m_layers[i].GetOutputSize());
}
m_layers[i].GetOutputAfterActivationFunction(temp_in, &temp_out);
}
if (temp_out.size() > 1)
utils::Softmax(&temp_out);
*output = temp_out;
//Add last layer activation
if (all_layers_activations != nullptr)
all_layers_activations->emplace_back(std::move(temp_in));
}
void MLP::GetOutputClass(const std::vector<double> &output, size_t * class_id) const {
utils::GetIdMaxElement(output, class_id);
}
void MLP::UpdateWeights(const std::vector<std::vector<double>> & all_layers_activations,
const std::vector<double> &deriv_error,
double learning_rate) {
std::vector<double> temp_deriv_error = deriv_error;
std::vector<double> deltas{};
//m_layers.size() equals (m_num_hidden_layers + 1)
for (int i = m_num_hidden_layers; i >= 0; --i) {
m_layers[i].UpdateWeights(all_layers_activations[i], temp_deriv_error, learning_rate, &deltas);
if (i > 0) {
temp_deriv_error.clear();
temp_deriv_error = std::move(deltas);
deltas.clear();
}
}
};
void MLP::Train(const std::vector<TrainingSample> &training_sample_set_with_bias,
double learning_rate,
int max_iterations,
double min_error_cost,
bool output_log) {
//rlunaro.03/01/2019. the compiler says that these variables are unused
//int num_examples = training_sample_set_with_bias.size();
//int num_features = training_sample_set_with_bias[0].GetInputVectorSize();
//{
// int layer_i = -1;
// int node_i = -1;
// std::cout << "Starting weights:" << std::endl;
// for (const auto & layer : m_layers) {
// layer_i++;
// node_i = -1;
// std::cout << "Layer " << layer_i << " :" << std::endl;
// for (const auto & node : layer.GetNodes()) {
// node_i++;
// std::cout << "\tNode " << node_i << " :\t";
// for (auto m_weightselement : node.GetWeights()) {
// std::cout << m_weightselement << "\t";
// }
// std::cout << std::endl;
// }
// }
//}
int i = 0;
double current_iteration_cost_function = 0.0;
for (i = 0; i < max_iterations; i++) {
current_iteration_cost_function = 0.0;
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
std::vector<double> predicted_output;
std::vector< std::vector<double> > all_layers_activations;
GetOutput(training_sample_with_bias.input_vector(),
&predicted_output,
&all_layers_activations);
const std::vector<double> & correct_output =
training_sample_with_bias.output_vector();
assert(correct_output.size() == predicted_output.size());
std::vector<double> deriv_error_output(predicted_output.size());
if (output_log && ((i % (max_iterations / 10)) == 0)) {
std::stringstream temp_training;
temp_training << training_sample_with_bias << "\t\t";
temp_training << "Predicted output: [";
for (size_t i = 0; i < predicted_output.size(); i++) {
if (i != 0)
temp_training << ", ";
temp_training << predicted_output[i];
}
temp_training << "]";
LOG(INFO) << temp_training.str();
}
for (size_t j = 0; j < predicted_output.size(); j++) {
current_iteration_cost_function +=
(std::pow)((correct_output[j] - predicted_output[j]), 2);
deriv_error_output[j] =
-2 * (correct_output[j] - predicted_output[j]);
}
UpdateWeights(all_layers_activations,
deriv_error_output,
learning_rate);
}
if (output_log && ((i % (max_iterations / 10)) == 0))
LOG(INFO) << "Iteration " << i << " cost function f(error): "
<< current_iteration_cost_function;
if (current_iteration_cost_function < min_error_cost)
break;
}
LOG(INFO) << "Iteration " << i << " cost function f(error): "
<< current_iteration_cost_function;
LOG(INFO) << "******************************";
LOG(INFO) << "******* TRAINING ENDED *******";
LOG(INFO) << "******* " << i << " iters *******";
LOG(INFO) << "******************************";
//{
// int layer_i = -1;
// int node_i = -1;
// std::cout << "Final weights:" << std::endl;
// for (const auto & layer : m_layers) {
// layer_i++;
// node_i = -1;
// std::cout << "Layer " << layer_i << " :" << std::endl;
// for (const auto & node : layer.GetNodes()) {
// node_i++;
// std::cout << "\tNode " << node_i << " :\t";
// for (auto m_weightselement : node.GetWeights()) {
// std::cout << m_weightselement << "\t";
// }
// std::cout << std::endl;
// }
// }
//}
};
size_t MLP::GetNumLayers()
{
return m_layers.size();
}
std::vector<std::vector<double>> MLP::GetLayerWeights( size_t layer_i )
{
std::vector<std::vector<double>> ret_val;
// check parameters
if( 0 <= layer_i && layer_i < m_layers.size() )
{
Layer current_layer = m_layers[layer_i];
for( Node & node : current_layer.GetNodesChangeable() )
{
ret_val.push_back( node.GetWeights() );
}
return ret_val;
}
else
throw new std::logic_error("Incorrect layer number in GetLayerWeights call");
}
void MLP::SetLayerWeights( size_t layer_i, std::vector<std::vector<double>> & weights )
{
// check parameters
if( 0 <= layer_i && layer_i < m_layers.size() )
{
m_layers[layer_i].SetWeights( weights );
}
else
throw new std::logic_error("Incorrect layer number in SetLayerWeights call");
}