//============================================================================ // Name : Main.cpp // Author : David Nogueira //============================================================================ #include "MLP.h" #include #include #include #include #include #include #include #include "microunit.h" #include "easylogging++.h" INITIALIZE_EASYLOGGINGPP UNIT(LearnAND) { LOG(INFO) << "Train AND function with mlp." << std::endl; std::vector training_set = { { { 0, 0 },{ 0.0 } }, { { 0, 1 },{ 0.0 } }, { { 1, 0 },{ 0.0 } }, { { 1, 1 },{ 1.0 } }, { { 1, 1 },{ 1.0 } }, { { 1, 1 },{ 1.0 } } }; bool bias_already_in = false; std::vector training_sample_set_with_bias(training_set); //set up bias if (!bias_already_in) { for (auto & training_sample_with_bias : training_sample_set_with_bias) { training_sample_with_bias.AddBiasValue(1); } } size_t num_examples = training_sample_set_with_bias.size(); size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize(); size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize(); MLP my_mlp({ num_features, 2 ,num_outputs }, { "sigmoid", "linear" }, false); //Train MLP my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25); for (const auto & training_sample : training_sample_set_with_bias) { std::vector output; my_mlp.GetOutput(training_sample.input_vector(), &output); for (int i = 0; i < num_outputs; i++) { bool predicted_output = output[i] > 0.5 ? true : false; bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false; ASSERT_TRUE(predicted_output == correct_output); } } LOG(INFO) << "Trained with success." << std::endl; } UNIT(LearnNAND) { LOG(INFO) << "Train NAND function with mlp." << std::endl; std::vector training_set = { { { 0, 0 },{ 1.0 } }, { { 0, 1 },{ 1.0 } }, { { 1, 0 },{ 1.0 } }, { { 1, 1 },{ 0.0 } }, { { 1, 1 },{ 0.0 } }, { { 1, 1 },{ 0.0 } } }; bool bias_already_in = false; std::vector training_sample_set_with_bias(training_set); //set up bias if (!bias_already_in) { for (auto & training_sample_with_bias : training_sample_set_with_bias) { training_sample_with_bias.AddBiasValue(1); } } size_t num_examples = training_sample_set_with_bias.size(); size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize(); size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize(); MLP my_mlp({ num_features, 2 ,num_outputs }, { "sigmoid", "linear" }, false); //Train MLP my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25); for (const auto & training_sample : training_sample_set_with_bias) { std::vector output; my_mlp.GetOutput(training_sample.input_vector(), &output); for (int i = 0; i < num_outputs; i++) { bool predicted_output = output[i] > 0.5 ? true : false; bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false; ASSERT_TRUE(predicted_output == correct_output); } } LOG(INFO) << "Trained with success." << std::endl; } UNIT(LearnOR) { LOG(INFO) << "Train OR function with mlp." << std::endl; std::vector training_set = { { { 0, 0 },{ 0.0 } }, { { 0, 0 },{ 0.0 } }, { { 0, 0 },{ 0.0 } }, { { 0, 1 },{ 1.0 } }, { { 1, 0 },{ 1.0 } }, { { 1, 1 },{ 1.0 } } }; bool bias_already_in = false; std::vector training_sample_set_with_bias(training_set); //set up bias if (!bias_already_in) { for (auto & training_sample_with_bias : training_sample_set_with_bias) { training_sample_with_bias.AddBiasValue(1); } } size_t num_examples = training_sample_set_with_bias.size(); size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize(); size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize(); MLP my_mlp({ num_features, 2 ,num_outputs }, { "sigmoid", "linear" }, false); //Train MLP my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25); for (const auto & training_sample : training_sample_set_with_bias) { std::vector output; my_mlp.GetOutput(training_sample.input_vector(), &output); for (int i = 0; i < num_outputs; i++) { bool predicted_output = output[i] > 0.5 ? true : false; bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false; ASSERT_TRUE(predicted_output == correct_output); } } LOG(INFO) << "Trained with success." << std::endl; } UNIT(LearnNOR) { LOG(INFO) << "Train NOR function with mlp." << std::endl; std::vector training_set = { { { 0, 0 },{ 1.0 } }, { { 0, 0 },{ 1.0 } }, { { 0, 0 },{ 1.0 } }, { { 0, 1 },{ 0.0 } }, { { 1, 0 },{ 0.0 } }, { { 1, 1 },{ 0.0 } } }; bool bias_already_in = false; std::vector training_sample_set_with_bias(training_set); //set up bias if (!bias_already_in) { for (auto & training_sample_with_bias : training_sample_set_with_bias) { training_sample_with_bias.AddBiasValue(1); } } size_t num_examples = training_sample_set_with_bias.size(); size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize(); size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize(); MLP my_mlp({ num_features, 2 ,num_outputs }, { "sigmoid", "linear" }, false); //Train MLP my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25); for (const auto & training_sample : training_sample_set_with_bias) { std::vector output; my_mlp.GetOutput(training_sample.input_vector(), &output); for (int i = 0; i < num_outputs; i++) { bool predicted_output = output[i] > 0.5 ? true : false; bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false; ASSERT_TRUE(predicted_output == correct_output); } } LOG(INFO) << "Trained with success." << std::endl; } UNIT(LearnXOR) { LOG(INFO) << "Train XOR function with mlp." << std::endl; std::vector training_set = { { { 0, 0 },{ 0.0 } }, { { 0, 1 },{ 1.0 } }, { { 1, 0 },{ 1.0 } }, { { 1, 1 },{ 0.0 } } }; bool bias_already_in = false; std::vector training_sample_set_with_bias(training_set); //set up bias if (!bias_already_in) { for (auto & training_sample_with_bias : training_sample_set_with_bias) { training_sample_with_bias.AddBiasValue(1); } } size_t num_examples = training_sample_set_with_bias.size(); size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize(); size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize(); MLP my_mlp({ num_features, 2 ,num_outputs }, { "sigmoid", "linear" }, false); //Train MLP my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25); for (const auto & training_sample : training_sample_set_with_bias) { std::vector output; my_mlp.GetOutput(training_sample.input_vector(), &output); for (int i = 0; i < num_outputs; i++) { bool predicted_output = output[i] > 0.5 ? true : false; bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false; ASSERT_TRUE(predicted_output == correct_output); } } LOG(INFO) << "Trained with success." << std::endl; } UNIT(LearnNOT) { LOG(INFO) << "Train NOT function with mlp." << std::endl; std::vector training_set = { { { 0},{ 1.0 } }, { { 1},{ 0.0 } } }; bool bias_already_in = false; std::vector training_sample_set_with_bias(training_set); //set up bias if (!bias_already_in) { for (auto & training_sample_with_bias : training_sample_set_with_bias) { training_sample_with_bias.AddBiasValue(1); } } size_t num_examples = training_sample_set_with_bias.size(); size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize(); size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize(); MLP my_mlp({ num_features, 2 ,num_outputs }, { "sigmoid", "linear" }, false); //Train MLP my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25); for (const auto & training_sample : training_sample_set_with_bias) { std::vector output; my_mlp.GetOutput(training_sample.input_vector(), &output); for (int i = 0; i < num_outputs; i++) { bool predicted_output = output[i] > 0.5 ? true : false; bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false; ASSERT_TRUE(predicted_output == correct_output); } } LOG(INFO) << "Trained with success." << std::endl; } UNIT(LearnX1) { LOG(INFO) << "Train X1 function with mlp." << std::endl; std::vector training_set = { { { 0, 0 },{ 0.0 } }, { { 0, 1 },{ 0.0 } }, { { 1, 0 },{ 1.0 } }, { { 1, 1 },{ 1.0 } } }; bool bias_already_in = false; std::vector training_sample_set_with_bias(training_set); //set up bias if (!bias_already_in) { for (auto & training_sample_with_bias : training_sample_set_with_bias) { training_sample_with_bias.AddBiasValue(1); } } size_t num_examples = training_sample_set_with_bias.size(); size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize(); size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize(); MLP my_mlp({ num_features, 2 ,num_outputs }, { "sigmoid", "linear" }, false); //Train MLP my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25); for (const auto & training_sample : training_sample_set_with_bias) { std::vector output; my_mlp.GetOutput(training_sample.input_vector(), &output); for (int i = 0; i < num_outputs; i++) { bool predicted_output = output[i] > 0.5 ? true : false; bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false; ASSERT_TRUE(predicted_output == correct_output); } } LOG(INFO) << "Trained with success." << std::endl; } UNIT(LearnX2) { LOG(INFO) << "Train X2 function with mlp." << std::endl; std::vector training_set = { { { 0, 0 },{ 0.0 } }, { { 0, 1 },{ 1.0 } }, { { 1, 0 },{ 0.0 } }, { { 1, 1 },{ 1.0 } } }; bool bias_already_in = false; std::vector training_sample_set_with_bias(training_set); //set up bias if (!bias_already_in) { for (auto & training_sample_with_bias : training_sample_set_with_bias) { training_sample_with_bias.AddBiasValue(1); } } size_t num_examples = training_sample_set_with_bias.size(); size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize(); size_t num_outputs = training_sample_set_with_bias[0].GetOutputVectorSize(); MLP my_mlp({ num_features, 2 ,num_outputs }, { "sigmoid", "linear" }, false); //Train MLP my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 0.5, 500, 0.25); for (const auto & training_sample : training_sample_set_with_bias) { std::vector output; my_mlp.GetOutput(training_sample.input_vector(), &output); for (int i = 0; i < num_outputs; i++) { bool predicted_output = output[i] > 0.5 ? true : false; bool correct_output = training_sample.output_vector()[i] > 0.5 ? true : false; ASSERT_TRUE(predicted_output == correct_output); } } LOG(INFO) << "Trained with success." << std::endl; } int main(int argc, char* argv[]) { START_EASYLOGGINGPP(argc, argv); microunit::UnitTester::Run(); return 0; }