Almost complete.

Works with zero hidden layers, but not with one or more.
Correctness in the backprop phase must be checked.
This commit is contained in:
davidjacnogueira
2016-11-02 01:04:34 +00:00
parent 07fffe4d55
commit ff7bfe1fa2
21 changed files with 1615 additions and 285 deletions

1
.gitignore vendored
View File

@@ -78,6 +78,7 @@ ipch/
*.opensdf *.opensdf
*.sdf *.sdf
*.cachefile *.cachefile
*.db
# Visual Studio profiler # Visual Studio profiler
*.psess *.psess

View File

@@ -0,0 +1,162 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{10A8D77B-A596-4B06-87DA-B28492D77905}</ProjectGuid>
<Keyword>Win32Proj</Keyword>
<RootNamespace>LayerTest</RootNamespace>
<WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="Shared">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(SolutionDir)..\deps</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(SolutionDir)..\deps</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="..\..\src\LayerTest.cpp">
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">true</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">true</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|x64'">false</ExcludedFromBuild>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\MLP_MVS.vcxproj">
<Project>{6bfa9d94-b136-4985-83a1-ee76fff6f374}</Project>
</ProjectReference>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@@ -0,0 +1,22 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Source Files">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Header Files">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hh;hpp;hxx;hm;inl;inc;xsd</Extensions>
</Filter>
<Filter Include="Resource Files">
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms</Extensions>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\..\src\LayerTest.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
</Project>

View File

@@ -0,0 +1,162 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{BCC41AEC-201D-4861-A756-2E10F95F76C5}</ProjectGuid>
<Keyword>Win32Proj</Keyword>
<RootNamespace>MLPTest</RootNamespace>
<WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="Shared">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(SolutionDir)..\deps</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(SolutionDir)..\deps</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="..\..\src\MLPTest.cpp">
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">true</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">true</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|x64'">false</ExcludedFromBuild>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\MLP_MVS.vcxproj">
<Project>{6bfa9d94-b136-4985-83a1-ee76fff6f374}</Project>
</ProjectReference>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@@ -0,0 +1,22 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Source Files">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Header Files">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hh;hpp;hxx;hm;inl;inc;xsd</Extensions>
</Filter>
<Filter Include="Resource Files">
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms</Extensions>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\..\src\MLPTest.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
</Project>

View File

@@ -1,9 +1,15 @@
 
Microsoft Visual Studio Solution File, Format Version 12.00 Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 14 # Visual Studio 14
VisualStudioVersion = 14.0.23107.0 VisualStudioVersion = 14.0.25420.1
MinimumVisualStudioVersion = 10.0.40219.1 MinimumVisualStudioVersion = 10.0.40219.1
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "MLP_MVS", "MLP_MVS.vcxproj", "{6BFA9D94-B136-4985-83A1-EE76FFF6F374}" Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "MLP_lib", "MLP_MVS.vcxproj", "{6BFA9D94-B136-4985-83A1-EE76FFF6F374}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "NodeTest", "NodeTest\NodeTest.vcxproj", "{7CAD640F-63A0-4065-A86B-E65143A8329C}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "MLPTest", "MLPTest\MLPTest.vcxproj", "{BCC41AEC-201D-4861-A756-2E10F95F76C5}"
EndProject
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "LayerTest", "LayerTest\LayerTest.vcxproj", "{10A8D77B-A596-4B06-87DA-B28492D77905}"
EndProject EndProject
Global Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution GlobalSection(SolutionConfigurationPlatforms) = preSolution
@@ -21,6 +27,30 @@ Global
{6BFA9D94-B136-4985-83A1-EE76FFF6F374}.Release|x64.Build.0 = Release|x64 {6BFA9D94-B136-4985-83A1-EE76FFF6F374}.Release|x64.Build.0 = Release|x64
{6BFA9D94-B136-4985-83A1-EE76FFF6F374}.Release|x86.ActiveCfg = Release|Win32 {6BFA9D94-B136-4985-83A1-EE76FFF6F374}.Release|x86.ActiveCfg = Release|Win32
{6BFA9D94-B136-4985-83A1-EE76FFF6F374}.Release|x86.Build.0 = Release|Win32 {6BFA9D94-B136-4985-83A1-EE76FFF6F374}.Release|x86.Build.0 = Release|Win32
{7CAD640F-63A0-4065-A86B-E65143A8329C}.Debug|x64.ActiveCfg = Debug|x64
{7CAD640F-63A0-4065-A86B-E65143A8329C}.Debug|x64.Build.0 = Debug|x64
{7CAD640F-63A0-4065-A86B-E65143A8329C}.Debug|x86.ActiveCfg = Debug|Win32
{7CAD640F-63A0-4065-A86B-E65143A8329C}.Debug|x86.Build.0 = Debug|Win32
{7CAD640F-63A0-4065-A86B-E65143A8329C}.Release|x64.ActiveCfg = Release|x64
{7CAD640F-63A0-4065-A86B-E65143A8329C}.Release|x64.Build.0 = Release|x64
{7CAD640F-63A0-4065-A86B-E65143A8329C}.Release|x86.ActiveCfg = Release|Win32
{7CAD640F-63A0-4065-A86B-E65143A8329C}.Release|x86.Build.0 = Release|Win32
{BCC41AEC-201D-4861-A756-2E10F95F76C5}.Debug|x64.ActiveCfg = Debug|x64
{BCC41AEC-201D-4861-A756-2E10F95F76C5}.Debug|x64.Build.0 = Debug|x64
{BCC41AEC-201D-4861-A756-2E10F95F76C5}.Debug|x86.ActiveCfg = Debug|Win32
{BCC41AEC-201D-4861-A756-2E10F95F76C5}.Debug|x86.Build.0 = Debug|Win32
{BCC41AEC-201D-4861-A756-2E10F95F76C5}.Release|x64.ActiveCfg = Release|x64
{BCC41AEC-201D-4861-A756-2E10F95F76C5}.Release|x64.Build.0 = Release|x64
{BCC41AEC-201D-4861-A756-2E10F95F76C5}.Release|x86.ActiveCfg = Release|Win32
{BCC41AEC-201D-4861-A756-2E10F95F76C5}.Release|x86.Build.0 = Release|Win32
{10A8D77B-A596-4B06-87DA-B28492D77905}.Debug|x64.ActiveCfg = Debug|x64
{10A8D77B-A596-4B06-87DA-B28492D77905}.Debug|x64.Build.0 = Debug|x64
{10A8D77B-A596-4B06-87DA-B28492D77905}.Debug|x86.ActiveCfg = Debug|Win32
{10A8D77B-A596-4B06-87DA-B28492D77905}.Debug|x86.Build.0 = Debug|Win32
{10A8D77B-A596-4B06-87DA-B28492D77905}.Release|x64.ActiveCfg = Release|x64
{10A8D77B-A596-4B06-87DA-B28492D77905}.Release|x64.Build.0 = Release|x64
{10A8D77B-A596-4B06-87DA-B28492D77905}.Release|x86.ActiveCfg = Release|Win32
{10A8D77B-A596-4B06-87DA-B28492D77905}.Release|x86.Build.0 = Release|Win32
EndGlobalSection EndGlobalSection
GlobalSection(SolutionProperties) = preSolution GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE HideSolutionNode = FALSE

View File

@@ -23,29 +23,30 @@
<Keyword>Win32Proj</Keyword> <Keyword>Win32Proj</Keyword>
<RootNamespace>MLP_MVS</RootNamespace> <RootNamespace>MLP_MVS</RootNamespace>
<WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion> <WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion>
<ProjectName>MLP_lib</ProjectName>
</PropertyGroup> </PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType> <ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries> <UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset> <PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet> <CharacterSet>Unicode</CharacterSet>
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType> <ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries> <UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset> <PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization> <WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet> <CharacterSet>Unicode</CharacterSet>
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType> <ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries> <UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset> <PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet> <CharacterSet>Unicode</CharacterSet>
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType> <ConfigurationType>StaticLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries> <UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset> <PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization> <WholeProgramOptimization>true</WholeProgramOptimization>
@@ -74,12 +75,14 @@
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental> <LinkIncremental>true</LinkIncremental>
<TargetName>MLP</TargetName>
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental> <LinkIncremental>false</LinkIncremental>
</PropertyGroup> </PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'"> <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental> <LinkIncremental>false</LinkIncremental>
<TargetName>MLP</TargetName>
</PropertyGroup> </PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'"> <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile> <ClCompile>
@@ -149,15 +152,30 @@
</ItemDefinitionGroup> </ItemDefinitionGroup>
<ItemGroup> <ItemGroup>
<ClInclude Include="..\deps\microunit.h" /> <ClInclude Include="..\deps\microunit.h" />
<ClInclude Include="..\src\Layer.h" /> <ClInclude Include="..\src\Chrono.h" />
<ClInclude Include="..\src\MLP.h" /> <ClInclude Include="..\src\Layer.h">
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|x64'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">false</ExcludedFromBuild>
</ClInclude>
<ClInclude Include="..\src\MLP.h">
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|x64'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">false</ExcludedFromBuild>
</ClInclude>
<ClInclude Include="..\src\Node.h" /> <ClInclude Include="..\src\Node.h" />
<ClInclude Include="..\src\Sample.h" /> <ClInclude Include="..\src\Sample.h" />
<ClInclude Include="..\src\Utils.h" /> <ClInclude Include="..\src\Utils.h" />
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClCompile Include="..\src\Main.cpp" /> <ClCompile Include="..\src\MLP.cpp">
<ClCompile Include="..\src\MLP.cpp" /> <ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|x64'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">false</ExcludedFromBuild>
<ExcludedFromBuild Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">false</ExcludedFromBuild>
</ClCompile>
</ItemGroup> </ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets"> <ImportGroup Label="ExtensionTargets">

View File

@@ -33,11 +33,11 @@
<ClInclude Include="..\deps\microunit.h"> <ClInclude Include="..\deps\microunit.h">
<Filter>Header Files</Filter> <Filter>Header Files</Filter>
</ClInclude> </ClInclude>
<ClInclude Include="..\src\Chrono.h">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ClCompile Include="..\src\Main.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\src\MLP.cpp"> <ClCompile Include="..\src\MLP.cpp">
<Filter>Source Files</Filter> <Filter>Source Files</Filter>
</ClCompile> </ClCompile>

View File

@@ -0,0 +1,157 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{7CAD640F-63A0-4065-A86B-E65143A8329C}</ProjectGuid>
<Keyword>Win32Proj</Keyword>
<RootNamespace>NodeTest</RootNamespace>
<WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>Application</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<PlatformToolset>v140</PlatformToolset>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>Unicode</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="Shared">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<LinkIncremental>true</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<LinkIncremental>false</LinkIncremental>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>WIN32;_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<PrecompiledHeader>
</PrecompiledHeader>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>_DEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(SolutionDir)..\deps</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>WIN32;NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PrecompiledHeader>
</PrecompiledHeader>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>NDEBUG;_CONSOLE;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>$(SolutionDir)..\deps</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemGroup>
<ClCompile Include="..\..\src\NodeTest.cpp" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\MLP_MVS.vcxproj">
<Project>{6bfa9d94-b136-4985-83a1-ee76fff6f374}</Project>
</ProjectReference>
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@@ -0,0 +1,22 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Source Files">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Header Files">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hh;hpp;hxx;hm;inl;inc;xsd</Extensions>
</Filter>
<Filter Include="Resource Files">
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms</Extensions>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\..\src\NodeTest.cpp">
<Filter>Source Files</Filter>
</ClCompile>
</ItemGroup>
</Project>

106
src/Chrono.h Normal file
View File

@@ -0,0 +1,106 @@
/**
* @file chrono.h
* @author David Alberto Nogueira (dan)
* @brief std::chrono wrapper.
*
* USAGE:
* @code{.cpp}
* chronowrap::Chronometer chrono; //Declare a Chronometer
* chrono.GetTime(); //Start timer
* {
* ... //do your code
* }
* chrono.StopTime(); //Stop timer
* std::cout << "Time: " << chrono.GetElapsedTime()
* << " sec." << std::endl; //Print duration
* @endcode
*
* @copyright Copyright (c) 2016, David Alberto Nogueira.
* All rights reserved. See licence below.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* (1) Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* (2) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* (3) The name of the author may not be used to
* endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CHRONO_H
#define CHRONO_H
#include <iostream>
#include <chrono>
#ifdef _WIN32
#include <time.h>
#else
#include <sys/time.h>
#endif
namespace chronowrap {
class Chronometer {
public:
Chronometer() {
time_span = std::chrono::steady_clock::duration::zero();
};
virtual ~Chronometer() {};
void GetTime() {
clock_begin = std::chrono::steady_clock::now();
}
void StopTime() {
std::chrono::steady_clock::time_point clock_end =
std::chrono::steady_clock::now();
time_span += clock_end - clock_begin;
}
//Return elapsed time in seconds
double GetElapsedTime() {
return double(time_span.count()) * resolution;
}
void Reset() {
time_span = std::chrono::steady_clock::duration::zero();
}
//in us
double GetClockResolutionUS() {
return resolution*1e6;
}
void PrintClockResolution() {
std::cout << "clock::period: " << GetClockResolutionUS() << " us.\n";
}
bool IsClockSteady() {
return std::chrono::steady_clock::is_steady;
}
void PrintClockSteady() {
printf("clock::is_steady: %s\n", IsClockSteady() ? "yes" : "no");
}
protected:
std::chrono::steady_clock::time_point clock_begin;
std::chrono::steady_clock::duration time_span;
const double resolution = double(std::chrono::steady_clock::period::num) /
double(std::chrono::steady_clock::period::den);
};
}
#endif // CHRONO_H

View File

@@ -23,39 +23,80 @@ public:
m_nodes.clear(); m_nodes.clear();
}; };
Layer(int num_nodes,
Layer(int num_nodes, int num_inputs_per_node) { int num_inputs_per_node,
bool use_constant_weight_init = true,
double constant_weight_init = 0.5) {
m_num_nodes = num_nodes; m_num_nodes = num_nodes;
m_num_inputs_per_node = num_inputs_per_node; m_num_inputs_per_node = num_inputs_per_node;
m_nodes = std::vector<Node>(num_nodes, Node(num_inputs_per_node)); m_nodes.resize(num_nodes,
std::move(Node(num_inputs_per_node,
use_constant_weight_init,
constant_weight_init)));
}; };
~Layer() { ~Layer() {
m_num_nodes = 0;
m_num_inputs_per_node = 0;
m_nodes.clear(); m_nodes.clear();
}; };
void GetOutput(const std::vector<double> &input, std::vector<double> * output) const { //std::vector<Node> & GetNodes() {
// return m_nodes;
//}
const std::vector<Node> & GetNodes() const {
return m_nodes;
}
void GetOutputAfterSigmoid(const std::vector<double> &input, std::vector<double> * output) const {
assert(input.size() == m_num_inputs_per_node); assert(input.size() == m_num_inputs_per_node);
output->resize(m_num_nodes); output->resize(m_num_nodes);
for (int i = 0; i < m_num_nodes; ++i) { for (int i = 0; i < m_num_nodes; ++i) {
(*output)[i] = m_nodes[i].GetOutput(input); m_nodes[i].GetOutputAfterSigmoid(input, &((*output)[i]));
} }
} }
void UpdateWeights(const std::vector<double> &x, void UpdateWeights(const std::vector<double> &input_layer_activation,
const std::vector<double> &deriv_error,
double m_learning_rate, double m_learning_rate,
double error) { std::vector<double> * deltas) {
assert(x.size() == m_num_inputs_per_node); assert(input_layer_activation.size() == m_num_inputs_per_node);
assert(deriv_error.size() == m_nodes.size());
for (size_t i = 0; i < m_nodes.size(); i++) deltas->resize(m_num_inputs_per_node, 0);
m_nodes[i].UpdateWeights(x, m_learning_rate, error);
for (size_t i = 0; i < m_nodes.size(); i++) {
double net_sum;
m_nodes[i].GetInputInnerProdWithWeights(input_layer_activation, &net_sum);
//dE/dwij = dE/doj . doj/dnetj . dnetj/dwij
double dE_doj = 0.0;
double doj_dnetj = 0.0;
double dnetj_dwij = 0.0;
dE_doj = deriv_error[i];
doj_dnetj = utils::deriv_sigmoid(net_sum);
for (int j = 0; j < m_num_inputs_per_node; j++) {
(*deltas)[j] += dE_doj * doj_dnetj * m_nodes[i].GetWeights()[j];
dnetj_dwij = input_layer_activation[j];
m_nodes[i].UpdateWeight(j,
-(dE_doj * doj_dnetj * dnetj_dwij),
m_learning_rate);
}
}
}; };
protected: protected:
int m_num_nodes; int m_num_nodes{ 0 };
int m_num_inputs_per_node; int m_num_inputs_per_node{ 0 };
std::vector<Node> m_nodes; std::vector<Node> m_nodes;
}; };

22
src/LayerTest.cpp Normal file
View File

@@ -0,0 +1,22 @@
//============================================================================
// Name : LayerTest.cpp
// Author : David Nogueira
//============================================================================
#include "Layer.h"
#include "Sample.h"
#include "Utils.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include <algorithm>
#include "microunit.h"
int main() {
microunit::UnitTester::Run();
return 0;
}

View File

@@ -11,4 +11,187 @@
#include <vector> #include <vector>
#include <algorithm> #include <algorithm>
bool MLP::ExportNNWeights(std::vector<double> *weights) const {
return true;
};
bool MLP::ImportNNWeights(const std::vector<double> & weights) {
return true;
};
void MLP::GetOutput(const std::vector<double> &input,
std::vector<double> * output,
std::vector<std::vector<double>> * all_layers_activations,
bool apply_softmax) const {
assert(input.size() == m_num_inputs);
int temp_size;
if (m_num_hidden_layers == 0)
temp_size = m_num_outputs;
else
temp_size = m_num_nodes_per_hidden_layer;
std::vector<double> temp_in(m_num_inputs, 0.0);
std::vector<double> temp_out(temp_size, 0.0);
temp_in = input;
//m_layers.size() equals (m_num_hidden_layers + 1)
for (int i = 0; i < (m_num_hidden_layers + 1); ++i) {
if (i > 0) {
//Store this layer activation
if (all_layers_activations != nullptr)
all_layers_activations->emplace_back(std::move(temp_in));
temp_in.clear();
temp_in = temp_out;
temp_out.clear();
temp_out.resize((i == m_num_hidden_layers) ?
m_num_outputs :
m_num_nodes_per_hidden_layer);
}
m_layers[i].GetOutputAfterSigmoid(temp_in, &temp_out);
}
if (apply_softmax && temp_out.size() > 1)
utils::Softmax(&temp_out);
*output = temp_out;
//Add last layer activation
if (all_layers_activations != nullptr)
all_layers_activations->emplace_back(std::move(temp_in));
}
void MLP::GetOutputClass(const std::vector<double> &output, size_t * class_id) const {
utils::GetIdMaxElement(output, class_id);
}
void MLP::UpdateWeights(const std::vector<std::vector<double>> & all_layers_activations,
const std::vector<double> &deriv_error,
double learning_rate) {
std::vector<double> temp_deriv_error = deriv_error;
std::vector<double> deltas{};
//m_layers.size() equals (m_num_hidden_layers + 1)
for (int i = m_num_hidden_layers; i >= 0; --i) {
m_layers[i].UpdateWeights(all_layers_activations[i], temp_deriv_error, learning_rate, &deltas);
if (i > 0) {
temp_deriv_error.clear();
temp_deriv_error = std::move(deltas);
deltas.clear();
}
}
};
void MLP::UpdateMiniBatch(const std::vector<TrainingSample> &training_sample_set_with_bias,
double learning_rate,
int max_iterations,
double min_error_cost) {
int num_examples = training_sample_set_with_bias.size();
int num_features = training_sample_set_with_bias[0].GetInputVectorSize();
{
int layer_i = -1;
int node_i = -1;
std::cout << "Starting weights:" << std::endl;
for (const auto & layer : m_layers) {
layer_i++;
node_i = -1;
std::cout << "Layer " << layer_i << " :" << std::endl;
for (const auto & node : layer.GetNodes()) {
node_i++;
std::cout << "\tNode " << node_i << " :\t";
for (auto m_weightselement : node.GetWeights()) {
std::cout << m_weightselement << "\t";
}
std::cout << std::endl;
}
}
}
for (int i = 0; i < max_iterations; i++) {
std::cout << "******************************" << std::endl;
std::cout << "******** ITER " << i << std::endl;
std::cout << "******************************" << std::endl;
double current_iteration_cost_function = 0.0;
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
std::vector<double> predicted_output;
std::vector< std::vector<double> > all_layers_activations;
GetOutput(training_sample_with_bias.input_vector(),
&predicted_output,
&all_layers_activations);
const std::vector<double> & correct_output =
training_sample_with_bias.output_vector();
assert(correct_output.size() == predicted_output.size());
std::vector<double> deriv_error_output(predicted_output.size());
std::cout << training_sample_with_bias << "\t\t";
{
std::cout << "Predicted output: [";
for (int i = 0; i < predicted_output.size(); i++) {
if (i != 0)
std::cout << ", ";
std::cout << predicted_output[i];
}
std::cout << "]" << std::endl;
}
for (int j = 0; j < predicted_output.size(); j++) {
current_iteration_cost_function +=
(std::pow)((correct_output[j] - predicted_output[j]), 2);
deriv_error_output[j] =
-2 * (correct_output[j] - predicted_output[j]);
}
UpdateWeights(all_layers_activations,
deriv_error_output,
learning_rate);
}
std::cout << "Iteration cost function f(error): "
<< current_iteration_cost_function << std::endl;
if (current_iteration_cost_function < min_error_cost)
break;
//{
// int layer_i = -1;
// int node_i = -1;
// std::cout << "Current weights:" << std::endl;
// for (const auto & layer : m_layers) {
// layer_i++;
// node_i = -1;
// std::cout << "Layer " << layer_i << " :" << std::endl;
// for (const auto & node : layer.GetNodes()) {
// node_i++;
// std::cout << "\tNode " << node_i << " :\t";
// for (auto m_weightselement : node.GetWeights()) {
// std::cout << m_weightselement << "\t";
// }
// std::cout << std::endl;
// }
// }
//}
}
std::cout << "******************************" << std::endl;
std::cout << "******* TRAINING ENDED *******" << std::endl;
std::cout << "******************************" << std::endl;
{
int layer_i = -1;
int node_i = -1;
std::cout << "Final weights:" << std::endl;
for (const auto & layer : m_layers) {
layer_i++;
node_i = -1;
std::cout << "Layer " << layer_i << " :" << std::endl;
for (const auto & node : layer.GetNodes()) {
node_i++;
std::cout << "\tNode " << node_i << " :\t";
for (auto m_weightselement : node.GetWeights()) {
std::cout << m_weightselement << "\t";
}
std::cout << std::endl;
}
}
}
};

View File

@@ -23,57 +23,77 @@ public:
int num_outputs, int num_outputs,
int num_hidden_layers, int num_hidden_layers,
int num_nodes_per_hidden_layer, int num_nodes_per_hidden_layer,
double learning_rate) { bool use_constant_weight_init = true,
double constant_weight_init = 0.5) {
m_num_inputs = num_inputs; m_num_inputs = num_inputs;
m_num_outputs = num_outputs; m_num_outputs = num_outputs;
m_num_hidden_layers = num_hidden_layers; m_num_hidden_layers = num_hidden_layers;
m_num_nodes_per_hidden_layer = num_nodes_per_hidden_layer; m_num_nodes_per_hidden_layer = num_nodes_per_hidden_layer;
m_learning_rate = learning_rate; CreateMLP(use_constant_weight_init,
}; constant_weight_init);
}
~MLP() { ~MLP() {
m_num_inputs = 0;
m_num_outputs = 0;
m_num_hidden_layers = 0;
m_num_nodes_per_hidden_layer = 0;
m_layers.clear(); m_layers.clear();
}; };
void CreateMLP() { bool ExportNNWeights(std::vector<double> *weights)const;
bool ImportNNWeights(const std::vector<double> & weights);
void GetOutput(const std::vector<double> &input,
std::vector<double> * output,
std::vector<std::vector<double>> * all_layers_activations = nullptr,
bool apply_softmax = false) const;
void GetOutputClass(const std::vector<double> &output, size_t * class_id) const;
void UpdateMiniBatch(const std::vector<TrainingSample> &training_sample_set_with_bias,
double learning_rate,
int max_iterations = 5000,
double min_error_cost = 0.001);
protected:
void UpdateWeights(const std::vector<std::vector<double>> & all_layers_activations,
const std::vector<double> &error,
double learning_rate);
private:
void CreateMLP(bool use_constant_weight_init,
double constant_weight_init = 0.5) {
if (m_num_hidden_layers > 0) { if (m_num_hidden_layers > 0) {
//first layer //first layer
m_layers.emplace_back(Layer(m_num_nodes_per_hidden_layer, m_num_inputs)); m_layers.emplace_back(Layer(m_num_nodes_per_hidden_layer,
m_num_inputs,
use_constant_weight_init,
constant_weight_init));
//subsequent layers //subsequent layers
for (int i = 0; i < m_num_hidden_layers - 1; i++) { for (int i = 0; i < m_num_hidden_layers - 1; i++) {
m_layers.emplace_back(Layer(m_num_nodes_per_hidden_layer, m_layers.emplace_back(Layer(m_num_nodes_per_hidden_layer,
m_num_nodes_per_hidden_layer)); m_num_nodes_per_hidden_layer,
use_constant_weight_init,
constant_weight_init));
} }
//last layer //last layer
m_layers.emplace_back(Layer(m_num_outputs, m_num_nodes_per_hidden_layer)); m_layers.emplace_back(Layer(m_num_outputs,
m_num_nodes_per_hidden_layer,
use_constant_weight_init,
constant_weight_init));
} else { } else {
m_layers.emplace_back(Layer(m_num_outputs, m_num_inputs)); m_layers.emplace_back(Layer(m_num_outputs,
m_num_inputs,
use_constant_weight_init,
constant_weight_init));
} }
} }
size_t GetWeightMatrixCardinality()const;
bool ExportWeights(std::vector<double> *weights)const;
bool ImportWeights(const std::vector<double> & weights);
void GetOutput(const std::vector<double> &input, std::vector<double> * output) const; int m_num_inputs{ 0 };
void GetOutputClass(const std::vector<double> &output, size_t * class_id) const; int m_num_outputs{ 0 };
int m_num_hidden_layers{ 0 };
void Train(const std::vector<TrainingSample> &training_sample_set, int m_num_nodes_per_hidden_layer{ 0 };
int max_iterations);
protected:
void UpdateWeights(const std::vector<double> &x,
double error);
private:
int m_num_inputs;
int m_num_outputs;
int m_num_hidden_layers;
int m_num_nodes_per_hidden_layer;
double m_learning_rate;
int m_max_iterations;
std::vector<Layer> m_layers; std::vector<Layer> m_layers;
}; };

232
src/MLPTest.cpp Normal file
View File

@@ -0,0 +1,232 @@
//============================================================================
// Name : Main.cpp
// Author : David Nogueira
//============================================================================
#include "MLP.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include <algorithm>
#include "microunit.h"
UNIT(LearnAND) {
std::cout << "Train AND function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0, 0 },{0.0}},
{{ 0, 1 },{0.0}},
{{ 1, 0 },{0.0}},
{{ 1, 1 },{1.0}}
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
MLP my_mlp(num_features, 1, 0, 5, true, 0.5);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 2, 1000, 0.245);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0]> 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNAND) {
std::cout << "Train NAND function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0, 0 },{1.0}},
{{ 0, 1 },{1.0}},
{{ 1, 0 },{1.0}},
{{ 1, 1 },{0.0}}
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
MLP my_mlp(num_features, 1, 0, 5, true, 0.5);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 2, 1000, 0.245);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0]> 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnOR) {
std::cout << "Train OR function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0, 0 },{0.0}},
{{ 0, 1 },{1.0}},
{{ 1, 0 },{1.0}},
{{ 1, 1 },{1.0}}
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
MLP my_mlp(num_features, 1, 0, 5, true, 0.5);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 2, 1000, 0.245);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0]> 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNOR) {
std::cout << "Train NOR function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0, 0 },{1.0}},
{{ 0, 1 },{0.0}},
{{ 1, 0 },{0.0}},
{{ 1, 1 },{0.0}}
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
MLP my_mlp(num_features, 1, 0, 5, true, 0.5);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 2, 1000, 0.245);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0]> 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
//UNIT(LearnXOR) {
// std::cout << "Train XOR function with mlp." << std::endl;
//
// std::vector<TrainingSample> training_set =
// {
// { { 0, 0 },{ 0.0 } },
// { { 0, 1 },{ 1.0 } },
// { { 1, 0 },{ 1.0 } },
// { { 1, 1 },{ 0.0 } }
// };
// bool bias_already_in = false;
// std::vector<TrainingSample> training_sample_set_with_bias(training_set);
// //set up bias
// if (!bias_already_in) {
// for (auto & training_sample_with_bias : training_sample_set_with_bias) {
// training_sample_with_bias.AddBiasValue(1);
// }
// }
//
// size_t num_examples = training_sample_set_with_bias.size();
// size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
// MLP my_mlp(num_features, 1, 0, 5, true, 0.5);
// //Train MLP
// my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 2, 1000, 0.245);
//
// for (const auto & training_sample : training_sample_set_with_bias) {
// std::vector<double> output;
// my_mlp.GetOutput(training_sample.input_vector(), &output);
// bool predicted_output = output[0]> 0.5 ? true : false;
// bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
// ASSERT_TRUE(predicted_output == correct_output);
// }
// std::cout << "Trained with success." << std::endl;
// std::cout << std::endl;
//}
UNIT(LearnNOT) {
std::cout << "Train NOT function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0},{1.0 }},
{{ 1},{0.0 }}
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
MLP my_mlp(num_features, 1, 0, 5, true, 0.5);
//Train MLP
my_mlp.UpdateMiniBatch(training_sample_set_with_bias, 2, 1000, 0.245);
for (const auto & training_sample : training_sample_set_with_bias) {
std::vector<double> output;
my_mlp.GetOutput(training_sample.input_vector(), &output);
bool predicted_output = output[0]> 0.5 ? true : false;
bool correct_output = training_sample.output_vector()[0] > 0.5 ? true : false;
ASSERT_TRUE(predicted_output == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
int main() {
microunit::UnitTester::Run();
return 0;
}

View File

@@ -1,172 +0,0 @@
//============================================================================
// Name : Main.cpp
// Author : David Nogueira
//============================================================================
#include "MLP.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include <algorithm>
#include "microunit.h"
UNIT(LearnAND) {
std::cout << "Train AND function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0, 0 },{1,0}},
{{ 0, 1 },{1,0}},
{{ 1, 0 },{1,0}},
{{ 1, 1 },{0,1}}
};
MLP my_mlp(2, 2, 1, 5, 0.1);
my_mlp.Train(training_set, 100);
for (const auto & training_sample : training_set){
size_t class_id;
my_mlp.GetOutputClass(training_sample.input_vector(), &class_id);
ASSERT_TRUE(class_id ==
std::distance(training_sample.output_vector().begin(),
std::max_element(training_sample.output_vector().begin(),
training_sample.output_vector().end()) ));
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNAND) {
std::cout << "Train NAND function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0, 0 },{0,1}},
{{ 0, 1 },{0,1}},
{{ 1, 0 },{0,1}},
{{ 1, 1 },{1,0}}
};
MLP my_mlp(2, 2, 1, 5, 0.1);
my_mlp.Train(training_set, 100);
for (const auto & training_sample : training_set) {
size_t class_id;
my_mlp.GetOutputClass(training_sample.input_vector(), &class_id);
ASSERT_TRUE(class_id ==
std::distance(training_sample.output_vector().begin(),
std::max_element(training_sample.output_vector().begin(),
training_sample.output_vector().end())));
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnOR) {
std::cout << "Train OR function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0, 0 },{1,0}},
{{ 0, 1 },{0,1}},
{{ 1, 0 },{0,1}},
{{ 1, 1 },{0,1}}
};
MLP my_mlp(2, 2, 1, 5, 0.1);
my_mlp.Train(training_set, 100);
for (const auto & training_sample : training_set) {
size_t class_id;
my_mlp.GetOutputClass(training_sample.input_vector(), &class_id);
ASSERT_TRUE(class_id ==
std::distance(training_sample.output_vector().begin(),
std::max_element(training_sample.output_vector().begin(),
training_sample.output_vector().end())));
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNOR) {
std::cout << "Train NOR function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0, 0 },{0,1}},
{{ 0, 1 },{1,0}},
{{ 1, 0 },{1,0}},
{{ 1, 1 },{1,0}}
};
MLP my_mlp(2, 2, 1, 5, 0.1);
my_mlp.Train(training_set, 100);
for (const auto & training_sample : training_set) {
size_t class_id;
my_mlp.GetOutputClass(training_sample.input_vector(), &class_id);
ASSERT_TRUE(class_id ==
std::distance(training_sample.output_vector().begin(),
std::max_element(training_sample.output_vector().begin(),
training_sample.output_vector().end())));
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnXOR) {
std::cout << "Train XOR function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{ 1,0 } },
{ { 0, 1 },{ 0,1 } },
{ { 1, 0 },{ 0,1 } },
{ { 1, 1 },{ 1,0 } }
};
MLP my_mlp(2, 2, 1, 5, 0.1);
my_mlp.Train(training_set, 100);
for (const auto & training_sample : training_set) {
size_t class_id;
my_mlp.GetOutputClass(training_sample.input_vector(), &class_id);
ASSERT_TRUE(class_id ==
std::distance(training_sample.output_vector().begin(),
std::max_element(training_sample.output_vector().begin(),
training_sample.output_vector().end())));
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNOT) {
std::cout << "Train NOT function with mlp." << std::endl;
std::vector<TrainingSample> training_set =
{
{{ 0},{0,1}},
{{ 1},{1,1}}
};
MLP my_mlp(1, 2, 1, 5, 0.1);
my_mlp.Train(training_set, 100);
for (const auto & training_sample : training_set) {
size_t class_id;
my_mlp.GetOutputClass(training_sample.input_vector(), &class_id);
ASSERT_TRUE(class_id ==
std::distance(training_sample.output_vector().begin(),
std::max_element(training_sample.output_vector().begin(),
training_sample.output_vector().end())));
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
int main() {
microunit::UnitTester::Run();
return 0;
}

View File

@@ -5,6 +5,8 @@
#ifndef NODE_H #ifndef NODE_H
#define NODE_H #define NODE_H
#include "Utils.h"
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#include <iostream> #include <iostream>
@@ -14,42 +16,58 @@
#include <algorithm> #include <algorithm>
#include <cassert> // for assert() #include <cassert> // for assert()
#define ZERO_WEIGHT_INITIALIZATION 1 #define CONSTANT_WEIGHT_INITIALIZATION 0
#define USE_SIGMOID 1
class Node { class Node {
public: public:
Node() { Node() {
m_bias = 0.0;
m_num_inputs = 0; m_num_inputs = 0;
m_bias = 0.0;
m_weights.clear(); m_weights.clear();
}; };
Node(int num_inputs) { Node(int num_inputs,
bool use_constant_weight_init = true,
double constant_weight_init = 0.5) {
m_num_inputs = num_inputs;
m_bias = 0.0; m_bias = 0.0;
m_num_inputs = num_inputs + 1;
m_weights.clear(); m_weights.clear();
m_weights = std::vector<double>(m_num_inputs);
//initialize weight vector //initialize weight vector
WeightInitialization(m_num_inputs,
use_constant_weight_init,
constant_weight_init);
};
~Node() {
m_num_inputs = 0;
m_bias = 0.0;
m_weights.clear();
};
void WeightInitialization(int m_num_inputs,
bool use_constant_weight_init = true,
double constant_weight_init = 0.5) {
//initialize weight vector
if (use_constant_weight_init) {
m_weights.resize(m_num_inputs, constant_weight_init);
} else {
m_weights.resize(m_num_inputs);
std::generate_n(m_weights.begin(), std::generate_n(m_weights.begin(),
m_num_inputs, m_num_inputs,
(ZERO_WEIGHT_INITIALIZATION) ? utils::gen_rand());
utils::gen_rand(0) : utils::gen_rand()); }
}; }
~Node() {
m_weights.clear();
//m_old_weights.clear();
};
int GetInputSize() const { int GetInputSize() const {
return m_num_inputs; return m_num_inputs;
} }
void SetInputSize(int num_inputs) { void SetInputSize(int num_inputs) {
m_num_inputs = num_inputs; m_num_inputs = num_inputs;
} }
double GetBias() const { double GetBias() const {
return m_bias; return m_bias;
} }
void SetBias(double bias) { void SetBias(double bias) {
m_bias = bias; m_bias = bias;
} }
@@ -66,7 +84,8 @@ public:
return m_weights.size(); return m_weights.size();
} }
void GetOutput(const std::vector<double> &input, double * output) const { void GetInputInnerProdWithWeights(const std::vector<double> &input,
double * output) const {
assert(input.size() == m_weights.size()); assert(input.size() == m_weights.size());
double inner_prod = std::inner_product(begin(input), double inner_prod = std::inner_product(begin(input),
end(input), end(input),
@@ -75,27 +94,37 @@ public:
*output = inner_prod; *output = inner_prod;
} }
void GetFilteredOutput(const std::vector<double> &input, double * bool_output) { void GetOutputAfterSigmoid(const std::vector<double> &input,
double inner_prod; double * output) const {
GetOutput(input, &inner_prod); double inner_prod = 0.0;
#if USE_SIGMOID == 1 GetInputInnerProdWithWeights(input, &inner_prod);
double y = utils::sigmoid(inner_prod); *output = utils::sigmoid(inner_prod);
*bool_output = (y > 0) ? true : false; }
#else
*bool_output = (inner_prod > 0) ? true : false; void GetBooleanOutput(const std::vector<double> &input,
#endif bool * bool_output) const {
double value;
GetOutputAfterSigmoid(input, &value);
*bool_output = (value > 0.5) ? true : false;
}; };
void UpdateWeights(const std::vector<double> &x, void UpdateWeights(const std::vector<double> &x,
double m_learning_rate, double error,
double error) { double learning_rate) {
assert(x.size() == m_weights.size()); assert(x.size() == m_weights.size());
for (size_t i = 0; i < m_weights.size(); i++) for (size_t i = 0; i < m_weights.size(); i++)
m_weights[i] += x[i] * m_learning_rate * error; m_weights[i] += x[i] * learning_rate * error;
}; };
void UpdateWeight(int weight_id,
double increment,
double learning_rate) {
m_weights[weight_id] += learning_rate*increment;
}
protected: protected:
int m_num_inputs; int m_num_inputs{ 0 };
double m_bias; double m_bias{ 0.0 };
std::vector<double> m_weights; std::vector<double> m_weights;
}; };

262
src/NodeTest.cpp Normal file
View File

@@ -0,0 +1,262 @@
//============================================================================
// Name : NodeTest.cpp
// Author : David Nogueira
//============================================================================
#include "Node.h"
#include "Sample.h"
#include "Utils.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <fstream>
#include <vector>
#include <algorithm>
#include "microunit.h"
namespace {
void Train(Node & node,
const std::vector<TrainingSample> &training_sample_set_with_bias,
double learning_rate,
int max_iterations,
bool use_constant_weight_init = true,
double constant_weight_init = 0.5) {
//initialize weight vector
node.WeightInitialization(training_sample_set_with_bias[0].GetInputVectorSize(),
use_constant_weight_init,
constant_weight_init);
std::cout << "Starting weights:\t";
for (auto m_weightselement : node.GetWeights())
std::cout << m_weightselement << "\t";
std::cout << std::endl;
for (int i = 0; i < max_iterations; i++) {
int error_count = 0;
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
bool prediction;
node.GetBooleanOutput(training_sample_with_bias.input_vector(), &prediction);
bool correct_output = training_sample_with_bias.output_vector()[0] > 0.5 ? true : false;
if (prediction != correct_output) {
error_count++;
double error = (correct_output ? 1 : 0) - (prediction ? 1 : 0);
node.UpdateWeights(training_sample_with_bias.input_vector(),
learning_rate,
error);
}
}
if (error_count == 0) break;
}
std::cout << "Final weights:\t\t";
for (auto m_weightselement : node.GetWeights())
std::cout << m_weightselement << "\t";
std::cout << std::endl;
};
}
UNIT(LearnAND) {
std::cout << "Train AND function with Node." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{0.0} },
{ { 0, 1 },{0.0} },
{ { 1, 0 },{0.0} },
{ { 1, 1 },{1.0} }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
Node my_node(num_features);
Train(my_node, training_sample_set_with_bias, 0.1, 100);
for (const auto & training_sample : training_sample_set_with_bias) {
bool class_id;
my_node.GetBooleanOutput(training_sample.input_vector(), &class_id);
bool correct_output = training_sample.output_vector()[0] > 0 ? true : false;
ASSERT_TRUE(class_id == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNAND) {
std::cout << "Train NAND function with Node." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{1.0} },
{ { 0, 1 },{1.0} },
{ { 1, 0 },{1.0} },
{ { 1, 1 },{0.0} }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
Node my_node(num_features);
Train(my_node, training_sample_set_with_bias, 0.1, 100);
for (const auto & training_sample : training_sample_set_with_bias) {
bool class_id;
my_node.GetBooleanOutput(training_sample.input_vector(), &class_id);
bool correct_output = training_sample.output_vector()[0] > 0 ? true : false;
ASSERT_TRUE(class_id == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnOR) {
std::cout << "Train OR function with Node." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{0.0} },
{ { 0, 1 },{1.0} },
{ { 1, 0 },{1.0} },
{ { 1, 1 },{1.0} }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
Node my_node(num_features);
Train(my_node, training_sample_set_with_bias, 0.1, 100);
for (const auto & training_sample : training_sample_set_with_bias) {
bool class_id;
my_node.GetBooleanOutput(training_sample.input_vector(), &class_id);
bool correct_output = training_sample.output_vector()[0] > 0 ? true : false;
ASSERT_TRUE(class_id == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNOR) {
std::cout << "Train NOR function with Node." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{1.0} },
{ { 0, 1 },{0.0} },
{ { 1, 0 },{0.0} },
{ { 1, 1 },{0.0} }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
Node my_node(num_features);
Train(my_node, training_sample_set_with_bias, 0.1, 100);
for (const auto & training_sample : training_sample_set_with_bias) {
bool class_id;
my_node.GetBooleanOutput(training_sample.input_vector(), &class_id);
bool correct_output = training_sample.output_vector()[0] > 0 ? true : false;
ASSERT_TRUE(class_id == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnNOT) {
std::cout << "Train NOT function with Node." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0 },{1.0} },
{ { 1 },{0.0}}
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
Node my_node(num_features);
Train(my_node, training_sample_set_with_bias, 0.1, 100);
for (const auto & training_sample : training_sample_set_with_bias) {
bool class_id;
my_node.GetBooleanOutput(training_sample.input_vector(), &class_id);
bool correct_output = training_sample.output_vector()[0] > 0 ? true : false;
ASSERT_TRUE(class_id == correct_output);
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
UNIT(LearnXOR) {
std::cout << "Train XOR function with Node." << std::endl;
std::vector<TrainingSample> training_set =
{
{ { 0, 0 },{0.0} },
{ { 0, 1 },{1.0} },
{ { 1, 0 },{1.0} },
{ { 1, 1 },{0.0} }
};
bool bias_already_in = false;
std::vector<TrainingSample> training_sample_set_with_bias(training_set);
//set up bias
if (!bias_already_in) {
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
training_sample_with_bias.AddBiasValue(1);
}
}
size_t num_examples = training_sample_set_with_bias.size();
size_t num_features = training_sample_set_with_bias[0].GetInputVectorSize();
Node my_node(num_features);
Train(my_node, training_sample_set_with_bias, 0.1, 100);
for (const auto & training_sample : training_sample_set_with_bias) {
bool class_id;
my_node.GetBooleanOutput(training_sample.input_vector(), &class_id);
bool correct_output = training_sample.output_vector()[0] > 0 ? true : false;
if (class_id != correct_output) {
std::cout << "Failed to train. " <<
" A simple perceptron cannot learn the XOR function." << std::endl;
FAIL();
}
}
std::cout << "Trained with success." << std::endl;
std::cout << std::endl;
}
int main() {
microunit::UnitTester::Run();
return 0;
}

View File

@@ -23,7 +23,21 @@ public:
void AddBiasValue(double bias_value) { void AddBiasValue(double bias_value) {
m_input_vector.insert(m_input_vector.begin(), bias_value); m_input_vector.insert(m_input_vector.begin(), bias_value);
} }
friend std::ostream & operator<<(std::ostream &stream, Sample const & obj) {
obj.PrintMyself(stream);
return stream;
};
protected: protected:
virtual void PrintMyself(std::ostream& stream) const {
stream << "Input vector: [";
for (int i = 0; i < m_input_vector.size(); i++) {
if (i != 0)
stream << ", ";
stream << m_input_vector[i];
}
stream << "]";
}
std::vector<double> m_input_vector; std::vector<double> m_input_vector;
}; };
@@ -41,7 +55,28 @@ public:
size_t GetOutputVectorSize() const { size_t GetOutputVectorSize() const {
return m_output_vector.size(); return m_output_vector.size();
} }
protected: protected:
virtual void PrintMyself(std::ostream& stream) const {
stream << "Input vector: [";
for (int i = 0; i < m_input_vector.size(); i++) {
if (i != 0)
stream << ", ";
stream << m_input_vector[i];
}
stream << "]";
stream << "; ";
stream << "Output vector: [";
for (int i = 0; i < m_output_vector.size(); i++) {
if (i != 0)
stream << ", ";
stream << m_output_vector[i];
}
stream << "]";
}
std::vector<double> m_output_vector; std::vector<double> m_output_vector;
}; };

View File

@@ -5,6 +5,7 @@
#ifndef UTILS_H #ifndef UTILS_H
#define UTILS_H #define UTILS_H
#include "Chrono.h"
#include <stdlib.h> #include <stdlib.h>
#include <math.h> #include <math.h>
#include <numeric> #include <numeric>
@@ -47,7 +48,7 @@ inline double deriv_sigmoid(double x) {
return sigmoid(x)*(1 - sigmoid(x)); return sigmoid(x)*(1 - sigmoid(x));
}; };
void Softmax(std::vector<double> *output) { inline void Softmax(std::vector<double> *output) {
size_t num_elements = output->size(); size_t num_elements = output->size();
std::vector<double> exp_output(num_elements); std::vector<double> exp_output(num_elements);
double exp_total = 0.0; double exp_total = 0.0;
@@ -60,35 +61,10 @@ void Softmax(std::vector<double> *output) {
} }
} }
void GetIdMaxElement(const std::vector<double> &output, size_t * class_id) { inline void GetIdMaxElement(const std::vector<double> &output, size_t * class_id) {
*class_id = std::distance(output.begin(), *class_id = std::distance(output.begin(),
std::max_element(output.begin(), std::max_element(output.begin(),
output.end())); output.end()));
} }
class Chronometer {
public:
Chronometer() {
time_span = std::chrono::steady_clock::duration::zero();
};
virtual ~Chronometer() {};
void GetTime() {
clock_begin = std::chrono::steady_clock::now();
}
void StopTime() {
std::chrono::steady_clock::time_point clock_end = std::chrono::steady_clock::now();
time_span += clock_end - clock_begin;
}
//Return elapsed time in seconds
double GetElapsedTime() {
return double(time_span.count()) *
std::chrono::steady_clock::period::num / std::chrono::steady_clock::period::den;
}
protected:
std::chrono::steady_clock::time_point clock_begin;
std::chrono::steady_clock::duration time_span;
};
} }
#endif // UTILS_H #endif // UTILS_H