Almost complete.

Works with zero hidden layers, but not with one or more.
Correctness in the backprop phase must be checked.
This commit is contained in:
davidjacnogueira
2016-11-02 01:04:34 +00:00
parent 07fffe4d55
commit ff7bfe1fa2
21 changed files with 1615 additions and 285 deletions

View File

@@ -11,4 +11,187 @@
#include <vector>
#include <algorithm>
bool MLP::ExportNNWeights(std::vector<double> *weights) const {
return true;
};
bool MLP::ImportNNWeights(const std::vector<double> & weights) {
return true;
};
void MLP::GetOutput(const std::vector<double> &input,
std::vector<double> * output,
std::vector<std::vector<double>> * all_layers_activations,
bool apply_softmax) const {
assert(input.size() == m_num_inputs);
int temp_size;
if (m_num_hidden_layers == 0)
temp_size = m_num_outputs;
else
temp_size = m_num_nodes_per_hidden_layer;
std::vector<double> temp_in(m_num_inputs, 0.0);
std::vector<double> temp_out(temp_size, 0.0);
temp_in = input;
//m_layers.size() equals (m_num_hidden_layers + 1)
for (int i = 0; i < (m_num_hidden_layers + 1); ++i) {
if (i > 0) {
//Store this layer activation
if (all_layers_activations != nullptr)
all_layers_activations->emplace_back(std::move(temp_in));
temp_in.clear();
temp_in = temp_out;
temp_out.clear();
temp_out.resize((i == m_num_hidden_layers) ?
m_num_outputs :
m_num_nodes_per_hidden_layer);
}
m_layers[i].GetOutputAfterSigmoid(temp_in, &temp_out);
}
if (apply_softmax && temp_out.size() > 1)
utils::Softmax(&temp_out);
*output = temp_out;
//Add last layer activation
if (all_layers_activations != nullptr)
all_layers_activations->emplace_back(std::move(temp_in));
}
void MLP::GetOutputClass(const std::vector<double> &output, size_t * class_id) const {
utils::GetIdMaxElement(output, class_id);
}
void MLP::UpdateWeights(const std::vector<std::vector<double>> & all_layers_activations,
const std::vector<double> &deriv_error,
double learning_rate) {
std::vector<double> temp_deriv_error = deriv_error;
std::vector<double> deltas{};
//m_layers.size() equals (m_num_hidden_layers + 1)
for (int i = m_num_hidden_layers; i >= 0; --i) {
m_layers[i].UpdateWeights(all_layers_activations[i], temp_deriv_error, learning_rate, &deltas);
if (i > 0) {
temp_deriv_error.clear();
temp_deriv_error = std::move(deltas);
deltas.clear();
}
}
};
void MLP::UpdateMiniBatch(const std::vector<TrainingSample> &training_sample_set_with_bias,
double learning_rate,
int max_iterations,
double min_error_cost) {
int num_examples = training_sample_set_with_bias.size();
int num_features = training_sample_set_with_bias[0].GetInputVectorSize();
{
int layer_i = -1;
int node_i = -1;
std::cout << "Starting weights:" << std::endl;
for (const auto & layer : m_layers) {
layer_i++;
node_i = -1;
std::cout << "Layer " << layer_i << " :" << std::endl;
for (const auto & node : layer.GetNodes()) {
node_i++;
std::cout << "\tNode " << node_i << " :\t";
for (auto m_weightselement : node.GetWeights()) {
std::cout << m_weightselement << "\t";
}
std::cout << std::endl;
}
}
}
for (int i = 0; i < max_iterations; i++) {
std::cout << "******************************" << std::endl;
std::cout << "******** ITER " << i << std::endl;
std::cout << "******************************" << std::endl;
double current_iteration_cost_function = 0.0;
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
std::vector<double> predicted_output;
std::vector< std::vector<double> > all_layers_activations;
GetOutput(training_sample_with_bias.input_vector(),
&predicted_output,
&all_layers_activations);
const std::vector<double> & correct_output =
training_sample_with_bias.output_vector();
assert(correct_output.size() == predicted_output.size());
std::vector<double> deriv_error_output(predicted_output.size());
std::cout << training_sample_with_bias << "\t\t";
{
std::cout << "Predicted output: [";
for (int i = 0; i < predicted_output.size(); i++) {
if (i != 0)
std::cout << ", ";
std::cout << predicted_output[i];
}
std::cout << "]" << std::endl;
}
for (int j = 0; j < predicted_output.size(); j++) {
current_iteration_cost_function +=
(std::pow)((correct_output[j] - predicted_output[j]), 2);
deriv_error_output[j] =
-2 * (correct_output[j] - predicted_output[j]);
}
UpdateWeights(all_layers_activations,
deriv_error_output,
learning_rate);
}
std::cout << "Iteration cost function f(error): "
<< current_iteration_cost_function << std::endl;
if (current_iteration_cost_function < min_error_cost)
break;
//{
// int layer_i = -1;
// int node_i = -1;
// std::cout << "Current weights:" << std::endl;
// for (const auto & layer : m_layers) {
// layer_i++;
// node_i = -1;
// std::cout << "Layer " << layer_i << " :" << std::endl;
// for (const auto & node : layer.GetNodes()) {
// node_i++;
// std::cout << "\tNode " << node_i << " :\t";
// for (auto m_weightselement : node.GetWeights()) {
// std::cout << m_weightselement << "\t";
// }
// std::cout << std::endl;
// }
// }
//}
}
std::cout << "******************************" << std::endl;
std::cout << "******* TRAINING ENDED *******" << std::endl;
std::cout << "******************************" << std::endl;
{
int layer_i = -1;
int node_i = -1;
std::cout << "Final weights:" << std::endl;
for (const auto & layer : m_layers) {
layer_i++;
node_i = -1;
std::cout << "Layer " << layer_i << " :" << std::endl;
for (const auto & node : layer.GetNodes()) {
node_i++;
std::cout << "\tNode " << node_i << " :\t";
for (auto m_weightselement : node.GetWeights()) {
std::cout << m_weightselement << "\t";
}
std::cout << std::endl;
}
}
}
};