mirror of
https://github.com/davidalbertonogueira/MLP.git
synced 2025-12-17 12:24:40 +03:00
WIP MLP class still in development.
This commit is contained in:
@@ -142,7 +142,9 @@
|
|||||||
</Link>
|
</Link>
|
||||||
</ItemDefinitionGroup>
|
</ItemDefinitionGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
|
<ClInclude Include="..\src\Layer.h" />
|
||||||
<ClInclude Include="..\src\MLP.h" />
|
<ClInclude Include="..\src\MLP.h" />
|
||||||
|
<ClInclude Include="..\src\Node.h" />
|
||||||
<ClInclude Include="..\src\Sample.h" />
|
<ClInclude Include="..\src\Sample.h" />
|
||||||
<ClInclude Include="..\src\Utils.h" />
|
<ClInclude Include="..\src\Utils.h" />
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
|
|||||||
@@ -24,6 +24,12 @@
|
|||||||
<ClInclude Include="..\src\MLP.h">
|
<ClInclude Include="..\src\MLP.h">
|
||||||
<Filter>Header Files</Filter>
|
<Filter>Header Files</Filter>
|
||||||
</ClInclude>
|
</ClInclude>
|
||||||
|
<ClInclude Include="..\src\Layer.h">
|
||||||
|
<Filter>Header Files</Filter>
|
||||||
|
</ClInclude>
|
||||||
|
<ClInclude Include="..\src\Node.h">
|
||||||
|
<Filter>Header Files</Filter>
|
||||||
|
</ClInclude>
|
||||||
</ItemGroup>
|
</ItemGroup>
|
||||||
<ItemGroup>
|
<ItemGroup>
|
||||||
<ClCompile Include="..\src\Main.cpp">
|
<ClCompile Include="..\src\Main.cpp">
|
||||||
|
|||||||
39
src/Layer.h
Normal file
39
src/Layer.h
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
//============================================================================
|
||||||
|
// Name : Layer.h
|
||||||
|
// Author : David Nogueira
|
||||||
|
//============================================================================
|
||||||
|
#ifndef LAYER_H
|
||||||
|
#define LAYER_H
|
||||||
|
|
||||||
|
#include "Node.h"
|
||||||
|
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <fstream>
|
||||||
|
#include <vector>
|
||||||
|
#include <algorithm>
|
||||||
|
|
||||||
|
class Layer {
|
||||||
|
public:
|
||||||
|
Layer() {
|
||||||
|
m_num_nodes = 0;
|
||||||
|
m_nodes.clear();
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
Layer(int num_nodes, int num_inputs_per_node) {
|
||||||
|
m_num_nodes = num_nodes;
|
||||||
|
m_nodes = std::vector<Node>(num_nodes, Node(num_inputs_per_node));
|
||||||
|
};
|
||||||
|
|
||||||
|
~Layer() {
|
||||||
|
|
||||||
|
};
|
||||||
|
protected:
|
||||||
|
int m_num_nodes;
|
||||||
|
std::vector<Node> m_nodes;
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif //LAYER_H
|
||||||
14
src/MLP.cpp
Normal file
14
src/MLP.cpp
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
//============================================================================
|
||||||
|
// Name : MLP.cpp
|
||||||
|
// Author : David Nogueira
|
||||||
|
//============================================================================
|
||||||
|
#include "MLP.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <fstream>
|
||||||
|
#include <vector>
|
||||||
|
#include <algorithm>
|
||||||
|
|
||||||
|
|
||||||
75
src/MLP.h
Normal file
75
src/MLP.h
Normal file
@@ -0,0 +1,75 @@
|
|||||||
|
//============================================================================
|
||||||
|
// Name : MLP.cpp
|
||||||
|
// Author : David Nogueira
|
||||||
|
//============================================================================
|
||||||
|
#ifndef MLP_H
|
||||||
|
#define MLP_H
|
||||||
|
|
||||||
|
#include "Layer.h"
|
||||||
|
#include "Sample.h"
|
||||||
|
#include "Utils.h"
|
||||||
|
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <fstream>
|
||||||
|
#include <vector>
|
||||||
|
#include <algorithm>
|
||||||
|
|
||||||
|
class MLP {
|
||||||
|
public:
|
||||||
|
MLP(int num_inputs,
|
||||||
|
int num_outputs,
|
||||||
|
int num_hidden_layers,
|
||||||
|
int num_nodes_per_hidden_layer,
|
||||||
|
double learning_rate,
|
||||||
|
int max_iterations,
|
||||||
|
double threshold) {
|
||||||
|
|
||||||
|
m_num_inputs = num_inputs;
|
||||||
|
m_num_outputs = num_outputs;
|
||||||
|
m_num_hidden_layers = num_hidden_layers;
|
||||||
|
m_num_nodes_per_hidden_layer = num_nodes_per_hidden_layer;
|
||||||
|
|
||||||
|
m_learning_rate = learning_rate;
|
||||||
|
m_max_iterations = max_iterations;
|
||||||
|
m_threshold = threshold;
|
||||||
|
};
|
||||||
|
|
||||||
|
~MLP() {
|
||||||
|
m_layers.clear();
|
||||||
|
};
|
||||||
|
|
||||||
|
void CreateMLP() {
|
||||||
|
if (m_num_hidden_layers > 0) {
|
||||||
|
//first layer
|
||||||
|
m_layers.emplace_back(Layer(m_num_nodes_per_hidden_layer, m_num_inputs));
|
||||||
|
//subsequent layers
|
||||||
|
for (int i = 0; i < m_num_hidden_layers - 1; i++) {
|
||||||
|
m_layers.emplace_back(Layer(m_num_nodes_per_hidden_layer,
|
||||||
|
m_num_nodes_per_hidden_layer));
|
||||||
|
}
|
||||||
|
//last layer
|
||||||
|
m_layers.emplace_back(Layer(m_num_outputs, m_num_nodes_per_hidden_layer));
|
||||||
|
} else {
|
||||||
|
m_layers.emplace_back(Layer(m_num_outputs, m_num_inputs));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
private:
|
||||||
|
|
||||||
|
int m_num_inputs;
|
||||||
|
int m_num_outputs;
|
||||||
|
int m_num_hidden_layers;
|
||||||
|
int m_num_nodes_per_hidden_layer;
|
||||||
|
|
||||||
|
double m_learning_rate;
|
||||||
|
int m_max_iterations;
|
||||||
|
double m_threshold;
|
||||||
|
|
||||||
|
std::vector<Layer> m_layers;
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif //MLP_H
|
||||||
24
src/Main.cpp
24
src/Main.cpp
@@ -2,7 +2,6 @@
|
|||||||
// Name : Main.cpp
|
// Name : Main.cpp
|
||||||
// Author : David Nogueira
|
// Author : David Nogueira
|
||||||
//============================================================================
|
//============================================================================
|
||||||
|
|
||||||
#include "MLP.h"
|
#include "MLP.h"
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
#include <stdlib.h>
|
#include <stdlib.h>
|
||||||
@@ -101,6 +100,28 @@ void LearnNOR() {
|
|||||||
std::cout << std::endl;
|
std::cout << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void LearnXOR() {
|
||||||
|
std::cout << "Train XOR function with mlp." << std::endl;
|
||||||
|
|
||||||
|
std::vector<TrainingSample> training_set =
|
||||||
|
{
|
||||||
|
{ { 1, 0, 0 },{ 1,0 } },
|
||||||
|
{ { 1, 0, 1 },{ 0,1 } },
|
||||||
|
{ { 1, 1, 0 },{ 0,1 } },
|
||||||
|
{ { 1, 1, 1 },{ 1,0 } }
|
||||||
|
};
|
||||||
|
|
||||||
|
MLP my_mlp(0.1, 100, 0.5);
|
||||||
|
my_mlp.Train(training_set, 1, 1);
|
||||||
|
|
||||||
|
assert(my_mlp.GetOutput({ 1, 0, 0 }) == 0);
|
||||||
|
assert(my_mlp.GetOutput({ 1, 0, 1 }) == 1);
|
||||||
|
assert(my_mlp.GetOutput({ 1, 1, 0 }) == 1);
|
||||||
|
assert(my_mlp.GetOutput({ 1, 1, 1 }) == 0);
|
||||||
|
std::cout << "Trained with success." << std::endl;
|
||||||
|
std::cout << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
void LearnNOT() {
|
void LearnNOT() {
|
||||||
std::cout << "Train NOT function with mlp." << std::endl;
|
std::cout << "Train NOT function with mlp." << std::endl;
|
||||||
|
|
||||||
@@ -124,6 +145,7 @@ int main() {
|
|||||||
LearnNAND();
|
LearnNAND();
|
||||||
LearnOR();
|
LearnOR();
|
||||||
LearnNOR();
|
LearnNOR();
|
||||||
|
LearnXOR();
|
||||||
LearnNOT();
|
LearnNOT();
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|||||||
82
src/Node.h
Normal file
82
src/Node.h
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
//============================================================================
|
||||||
|
// Name : Node.h
|
||||||
|
// Author : David Nogueira
|
||||||
|
//============================================================================
|
||||||
|
#ifndef NODE_H
|
||||||
|
#define NODE_H
|
||||||
|
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <fstream>
|
||||||
|
#include <vector>
|
||||||
|
#include <algorithm>
|
||||||
|
|
||||||
|
#define ZERO_WEIGHT_INITIALIZATION 1
|
||||||
|
|
||||||
|
class Node {
|
||||||
|
public:
|
||||||
|
Node() {
|
||||||
|
m_bias = 0.0;
|
||||||
|
//m_old_bias = 0.0;
|
||||||
|
m_num_inputs = 0;
|
||||||
|
m_weights.clear();
|
||||||
|
//m_old_weights.clear();
|
||||||
|
};
|
||||||
|
Node(int num_inputs) {
|
||||||
|
m_bias = 0.0;
|
||||||
|
//m_old_bias = 0.0;
|
||||||
|
m_num_inputs = num_inputs;
|
||||||
|
m_weights.clear();
|
||||||
|
//m_old_weights.clear();
|
||||||
|
m_weights = std::vector<double>(num_inputs);
|
||||||
|
//m_old_weights = std::vector<double>(num_inputs);
|
||||||
|
|
||||||
|
//initialize weight vector
|
||||||
|
std::generate_n(m_weights.begin(),
|
||||||
|
num_inputs,
|
||||||
|
(ZERO_WEIGHT_INITIALIZATION) ?
|
||||||
|
utils::gen_rand(0) : utils::gen_rand());
|
||||||
|
};
|
||||||
|
~Node() {
|
||||||
|
m_weights.clear();
|
||||||
|
//m_old_weights.clear();
|
||||||
|
};
|
||||||
|
int GetInputSize() {
|
||||||
|
return m_num_inputs;
|
||||||
|
}
|
||||||
|
void SetInputSize(int num_inputs) {
|
||||||
|
m_num_inputs = num_inputs;
|
||||||
|
}
|
||||||
|
double GetBias() {
|
||||||
|
return m_bias;
|
||||||
|
}
|
||||||
|
//double GetOldBias() {
|
||||||
|
// return m_old_bias;
|
||||||
|
//}
|
||||||
|
void SetBias(double bias) {
|
||||||
|
m_bias = bias;
|
||||||
|
}
|
||||||
|
//void SetOldBias(double old_bias) {
|
||||||
|
// m_old_bias = old_bias;
|
||||||
|
//}
|
||||||
|
std::vector<double> & GetWeights() {
|
||||||
|
return m_weights;
|
||||||
|
}
|
||||||
|
//std::vector<double> & GetOldWeights() {
|
||||||
|
// return m_old_weights;
|
||||||
|
//}
|
||||||
|
uint32_t GetWeightsVectorSize() const {
|
||||||
|
return m_weights.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
int m_num_inputs;
|
||||||
|
double m_bias;
|
||||||
|
//double m_old_bias;
|
||||||
|
std::vector<double> m_weights;
|
||||||
|
//std::vector<double> m_old_weights;
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif //NODE_H
|
||||||
@@ -1,3 +1,7 @@
|
|||||||
|
//============================================================================
|
||||||
|
// Name : Sample.h
|
||||||
|
// Author : David Nogueira
|
||||||
|
//============================================================================
|
||||||
#ifndef TRAININGSAMPLE_H
|
#ifndef TRAININGSAMPLE_H
|
||||||
#define TRAININGSAMPLE_H
|
#define TRAININGSAMPLE_H
|
||||||
|
|
||||||
|
|||||||
@@ -1,3 +1,7 @@
|
|||||||
|
//============================================================================
|
||||||
|
// Name : Utils.h
|
||||||
|
// Author : David Nogueira
|
||||||
|
//============================================================================
|
||||||
#ifndef UTILS_H
|
#ifndef UTILS_H
|
||||||
#define UTILS_H
|
#define UTILS_H
|
||||||
|
|
||||||
@@ -15,10 +19,11 @@ namespace utils {
|
|||||||
|
|
||||||
struct gen_rand {
|
struct gen_rand {
|
||||||
double factor;
|
double factor;
|
||||||
|
double offset;
|
||||||
public:
|
public:
|
||||||
gen_rand(double r = 1.0) : factor(r / RAND_MAX) {}
|
gen_rand(double r = 2.0) : factor(r / RAND_MAX), offset(r / 2) {}
|
||||||
double operator()() {
|
double operator()() {
|
||||||
return rand() * factor;
|
return rand() * factor - offset;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user