Add IRIS dataset usage example.

Add LoadModel and SaveModel methods.
This commit is contained in:
davidjacnogueira
2017-03-10 00:20:35 +00:00
parent 2fd468ca63
commit 4005aff367
11 changed files with 659 additions and 57 deletions

View File

@@ -12,11 +12,82 @@
#include <algorithm>
#include "easylogging++.h"
bool MLP::ExportNNWeights(std::vector<double> *weights) const {
return true;
//desired call sintax : MLP({64*64,20,4}, {"sigmoid", "linear"},
MLP::MLP(const std::vector<uint64_t> & layers_nodes,
const std::vector<std::string> & layers_activfuncs,
bool use_constant_weight_init,
double constant_weight_init) {
assert(layers_nodes.size() >= 2);
assert(layers_activfuncs.size() + 1 == layers_nodes.size());
CreateMLP(layers_nodes,
layers_activfuncs,
use_constant_weight_init,
constant_weight_init);
};
bool MLP::ImportNNWeights(const std::vector<double> & weights) {
return true;
MLP::MLP(std::string & filename) {
LoadMLPNetwork(filename);
}
MLP::~MLP() {
m_num_inputs = 0;
m_num_outputs = 0;
m_num_hidden_layers = 0;
m_layers_nodes.clear();
m_layers.clear();
};
void MLP::CreateMLP(const std::vector<uint64_t> & layers_nodes,
const std::vector<std::string> & layers_activfuncs,
bool use_constant_weight_init,
double constant_weight_init) {
m_layers_nodes = layers_nodes;
m_num_inputs = m_layers_nodes[0];
m_num_outputs = m_layers_nodes[m_layers_nodes.size() - 1];
m_num_hidden_layers = m_layers_nodes.size() - 2;
for (int i = 0; i < m_layers_nodes.size() - 1; i++) {
m_layers.emplace_back(Layer(m_layers_nodes[i],
m_layers_nodes[i + 1],
layers_activfuncs[i],
use_constant_weight_init,
constant_weight_init));
}
};
void MLP::SaveMLPNetwork(std::string & filename)const {
FILE * file;
file = fopen(filename.c_str(), "wb");
fwrite(&m_num_inputs, sizeof(m_num_inputs), 1, file);
fwrite(&m_num_outputs, sizeof(m_num_outputs), 1, file);
fwrite(&m_num_hidden_layers, sizeof(m_num_hidden_layers), 1, file);
if (!m_layers_nodes.empty())
fwrite(&m_layers_nodes[0], sizeof(m_layers_nodes[0]), m_layers_nodes.size(), file);
for (int i = 0; i < m_layers.size(); i++) {
m_layers[i].SaveLayer(file);
}
fclose(file);
};
void MLP::LoadMLPNetwork(std::string & filename) {
m_layers_nodes.clear();
m_layers.clear();
FILE * file;
file = fopen(filename.c_str(), "rb");
fread(&m_num_inputs, sizeof(m_num_inputs), 1, file);
fread(&m_num_outputs, sizeof(m_num_outputs), 1, file);
fread(&m_num_hidden_layers, sizeof(m_num_hidden_layers), 1, file);
m_layers_nodes.resize(m_num_hidden_layers + 2);
if (!m_layers_nodes.empty())
fread(&m_layers_nodes[0], sizeof(m_layers_nodes[0]), m_layers_nodes.size(), file);
m_layers.resize(m_layers_nodes.size() - 1);
for (int i = 0; i < m_layers.size(); i++) {
m_layers[i].LoadLayer(file);
}
fclose(file);
};
void MLP::GetOutput(const std::vector<double> &input,
@@ -80,7 +151,8 @@ void MLP::UpdateWeights(const std::vector<std::vector<double>> & all_layers_acti
void MLP::UpdateMiniBatch(const std::vector<TrainingSample> &training_sample_set_with_bias,
double learning_rate,
int max_iterations,
double min_error_cost) {
double min_error_cost,
bool output_log) {
int num_examples = training_sample_set_with_bias.size();
int num_features = training_sample_set_with_bias[0].GetInputVectorSize();
@@ -102,23 +174,28 @@ void MLP::UpdateMiniBatch(const std::vector<TrainingSample> &training_sample_set
// }
// }
//}
size_t i = 0;
double current_iteration_cost_function = 0.0;
for (i = 0; i < max_iterations; i++) {
current_iteration_cost_function = 0.0;
for (auto & training_sample_with_bias : training_sample_set_with_bias) {
std::vector<double> predicted_output;
std::vector< std::vector<double> > all_layers_activations;
GetOutput(training_sample_with_bias.input_vector(),
&predicted_output,
&all_layers_activations);
const std::vector<double> & correct_output =
training_sample_with_bias.output_vector();
assert(correct_output.size() == predicted_output.size());
std::vector<double> deriv_error_output(predicted_output.size());
if ((i % (max_iterations / 100)) == 0) {
if (output_log && ((i % (max_iterations / 10)) == 0)) {
std::stringstream temp_training;
temp_training << training_sample_with_bias << "\t\t";
@@ -144,7 +221,7 @@ void MLP::UpdateMiniBatch(const std::vector<TrainingSample> &training_sample_set
learning_rate);
}
if ((i % (max_iterations / 100)) == 0)
if (output_log && ((i % (max_iterations / 10)) == 0))
LOG(INFO) << "Iteration " << i << " cost function f(error): "
<< current_iteration_cost_function;
if (current_iteration_cost_function < min_error_cost)